BER Performance of ML Receiver

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering
Indian Institute of Technology Bombay

October 15, 2013

Bit Error Rate of ML Decision Rule

- Average probability of bit error is also called bit error rate (BER)
- For fixed SNR, symbol error probability depends only on constellation geometry
- For fixed SNR, BER depends on both constellation geometry and the bits to signal mapping

- For an M-ary constellation, number of possible bitmaps is $M!=M(M-1) \cdots 3 \cdot 2 \cdot 1$

Bit Error Rate for QPSK using Gray Bitmap

- Let $b[1] b[2]$ be the transmitted symbol
- Let $\hat{b}[1] \hat{b}[2]$ be the decoded symbol
- Let $P_{1}=\operatorname{Pr}(\hat{b}[1] \neq b[1])$ and $P_{2}=\operatorname{Pr}(\hat{b}[2] \neq b[2])$
- Average probability of bit error is $P_{b}=\frac{P_{1}+P_{2}}{2}$

Bit Error Rate for QPSK using Gray Bitmap

Gray coded bitmap for QPSK

- Probability of making error on $b[1]$ when $b[1] b[2]=00$ is

$$
\begin{aligned}
P_{1 \mid 00} & =\operatorname{Pr}[\hat{b}[1]=1 \mid b[1] b[2]=00] \\
& =\operatorname{Pr}[\hat{b}[1] \hat{b}[2]=10 \text { or } \hat{b}[1] \hat{b}[2]=11 \mid b[1] b[2]=00] \\
& =\operatorname{Pr}\left[Y_{c}<0 \mid b[1] b[2]=00\right]=Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)
\end{aligned}
$$

- By symmetry, $P_{1}=Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)$

Bit Error Rate for QPSK using Gray Bitmap

Gray coded bitmap for QPSK

- Probability of making error on $b[2]$ when $b[1] b[2]=00$ is

$$
\begin{aligned}
P_{2 \mid 00} & =\operatorname{Pr}[\hat{b}[2]=1 \mid b[1] b[2]=00] \\
& =\operatorname{Pr}[\hat{b}[1] \hat{b}[2]=01 \text { or } \hat{b}[1] \hat{b}[2]=11 \mid b[1] b[2]=00] \\
& =\operatorname{Pr}\left[Y_{s}<0 \mid b[1] b[2]=00\right]=Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)
\end{aligned}
$$

- By symmetry, $P_{2}=Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right) \cdot P_{b}=\left(P_{1}+P_{2}\right) / 2=Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)$

Bit Error Rate for QPSK using Other Bitmap

- Probability of making error on $b[1]$ when $b[1] b[2]=00$ is

$$
\begin{aligned}
P_{1 \mid 00} & =\operatorname{Pr}[\hat{b}[1]=1 \mid b[1] b[2]=00] \\
& =\operatorname{Pr}[\hat{b}[1] \hat{b}[2]=10 \text { or } \hat{b}[1] \hat{b}[2]=11 \mid b[1] b[2]=00] \\
& =\operatorname{Pr}\left[Y_{c}<0 \mid b[1] b[2]=00\right]=Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)
\end{aligned}
$$

- Can we use symmetry? Yes. $P_{1}=Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)$

Bit Error Rate for QPSK using Other Bitmap

- Probability of making error on $b[2]$ when $b[1] b[2]=00$ is

$$
\begin{aligned}
P_{2 \mid 00} & =\operatorname{Pr}[\hat{b}[2]=1 \mid b[1] b[2]=00] \\
& =\operatorname{Pr}[\hat{b}[1] \hat{b}[2]=01 \text { or } \hat{b}[1] \hat{b}[2]=11 \mid b[1] b[2]=00] \\
& =\operatorname{Pr}\left[\left(Y_{c}>0 \cap Y_{s}<0\right) \bigcup\left(Y_{c}<0 \cap Y_{s}>0\right) \mid b[1] b[2]=00\right] \\
& =2 Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)\left[1-Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)\right]
\end{aligned}
$$

Bit Error Rate for QPSK using Other Bitmap

- Can we use symmetry? Yes. $P_{2}=2 Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)\left[1-Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)\right]$
- Average probability of bit error is

$$
P_{b}=\frac{P_{1}+P_{2}}{2}=\frac{3}{2} Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)-Q^{2}\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right) \approx \frac{3}{2} Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)
$$

- Average bit error probability is increased by about 50%

Thanks for your attention

