Circularly Symmetric Gaussian Random Vectors

Saravanan Vijayakumaran sarva@ee.iitb.ac.in
Department of Electrical Engineering Indian Institute of Technology Bombay

October 1, 2013

Circularly Symmetric Gaussian Random Vectors

Definition (Complex Gaussian Random Variable)

If X and Y are jointly Gaussian random variables, $Z=X+j Y$ is a complex Gaussian random variable.

Definition (Complex Gaussian Random Vector)

If \mathbf{X} and \mathbf{Y} are jointly Gaussian random vectors, $\mathbf{Z}=\mathbf{X}+j \mathbf{Y}$ is a complex Gaussian random vector.

Definition (Circularly Symmetric Gaussian RV)

A complex Gaussian random vector \mathbf{Z} is circularly symmetric if $e^{j \phi} \mathbf{Z}$ has the same distribution as \mathbf{Z} for all real ϕ.
If \mathbf{Z} is circularly symmetric, then

- $E[\mathbf{Z}]=E\left[e^{j \phi} \mathbf{Z}\right]=e^{j \phi} E[\mathbf{Z}] \Longrightarrow E[\mathbf{Z}]=0$.
- $\operatorname{cov}\left(e^{j \phi} \mathbf{Z}\right)=E\left[e^{j \phi} \mathbf{Z} e^{-j \phi} \mathbf{Z}^{H}\right]=\operatorname{cov}(\mathbf{Z})$. (See footnote)
- Define pseudocovariance of \mathbf{Z} as $E\left[\mathbf{Z Z}^{\top}\right]$.

$$
E\left[\mathbf{Z Z} \mathbf{Z}^{T}\right]=E\left[e^{j \phi} \mathbf{Z e}^{j \phi} \mathbf{Z}^{T}\right]=e^{2 j \phi} E\left[\mathbf{Z Z}^{T}\right] \Longrightarrow E\left[\mathbf{Z Z}^{T}\right]=\mathbf{0}
$$

[^0]
Circular Symmetry for Random Variables

- Consider a circularly symmetric complex Gaussian RV $Z=X+j Y$
- $E[Z]=0 \Longrightarrow E[X]=0$ and $E[Y]=0$
- Pseudocovariance zero $\Longrightarrow E\left[Z Z^{\top}\right]=E\left[Z^{2}\right]=0 \Longrightarrow$ $\operatorname{var}(X)=\operatorname{var}(Y), \operatorname{cov}(X, Y)=0$
- If Z is a circularly symmetric complex Gaussian random variable, its real and imaginary parts are independent and have equal variance

Complex Gaussian Random Vector PDF

- The pdf of a complex random vector \mathbf{Z} is the joint pdf of its real and imaginary parts i.e. the pdf of

$$
\tilde{\mathbf{Z}}=\left[\begin{array}{l}
\mathbf{X} \\
\mathbf{Y}
\end{array}\right]
$$

- For a complex Gaussian random vector, the pdf is given by

$$
p(\mathbf{z})=p(\tilde{\mathbf{z}})=\frac{1}{(2 \pi)^{n}\left(\operatorname{det}\left(\mathbf{C}_{\tilde{\mathbf{z}}}\right)\right)^{\frac{1}{2}}} \exp \left(-\frac{1}{2}(\tilde{\mathbf{z}}-\tilde{\mathbf{m}})^{T} \mathbf{C}_{\tilde{\mathbf{z}}}^{-1}(\tilde{\mathbf{z}}-\tilde{\mathbf{m}})\right)
$$

where $\tilde{\mathbf{m}}=E[\tilde{\mathbf{Z}}]$ and

$$
\begin{gathered}
\mathbf{C}_{\tilde{\mathbf{Z}}}=\left[\begin{array}{ll}
\mathbf{C}_{\mathbf{X}} & \mathbf{C}_{\mathbf{X Y}} \\
\mathbf{C}_{\mathbf{Y X}} & \mathbf{C}_{\mathbf{Y}}
\end{array}\right] \\
\mathbf{C}_{\mathbf{X}}=E\left[(\mathbf{X}-E[\mathbf{X}])(\mathbf{X}-E[\mathbf{X}])^{T}\right] \\
\mathbf{C}_{\mathbf{Y}}=E\left[(\mathbf{Y}-E[\mathbf{Y}])(\mathbf{Y}-E[\mathbf{Y}])^{T}\right] \\
\mathbf{C}_{\mathbf{X Y}}=E\left[(\mathbf{X}-E[\mathbf{X}])(\mathbf{Y}-E[\mathbf{Y}])^{T}\right] \\
\mathbf{C}_{\mathbf{Y X}}=E\left[(\mathbf{Y}-E[\mathbf{Y}])(\mathbf{X}-E[\mathbf{X}])^{T}\right]
\end{gathered}
$$

Circularly Symmetry and Pseudocovariance

- Covariance of $\mathbf{Z}=\mathbf{X}+j \mathbf{Y}$

$$
\mathbf{C}_{\mathbf{Z}}=E\left[(\mathbf{Z}-E[\mathbf{Z}])(\mathbf{Z}-E[\mathbf{Z}])^{H}\right]=\mathbf{C}_{\mathbf{X}}+\mathbf{C}_{\mathbf{Y}}+j\left(\mathbf{C}_{\mathbf{Y X}}-\mathbf{C}_{\mathbf{X Y}}\right)
$$

- Pseudocovariance of $\mathbf{Z}=\mathbf{X}+j \mathbf{Y}$ is

$$
E\left[(\mathbf{Z}-E[\mathbf{Z}])(\mathbf{Z}-E[\mathbf{Z}])^{T}\right]=\mathbf{C}_{\mathbf{X}}-\mathbf{C}_{\mathbf{Y}}+j\left(\mathbf{C}_{\mathbf{X Y}}+\mathbf{C}_{\mathbf{Y X}}\right)
$$

- Pseudocovariance is zero \Longrightarrow
- $\mathbf{C}_{\mathrm{X}}=\mathrm{C}_{\mathrm{Y}}, \mathrm{C}_{\mathrm{XY}}=-\mathrm{C}_{\mathrm{YX}}$
- $\mathbf{C}_{z}=2 \mathbf{C}_{x}+2 j \mathbf{C}_{y x}$
- The covariance of $\tilde{\mathbf{Z}}=\left[\begin{array}{ll}\mathbf{X} & \mathbf{Y}\end{array}\right]^{\top}$ for zero pseudocovariance is

$$
\mathbf{C}_{\tilde{Z}}=\left[\begin{array}{ll}
\mathbf{C}_{\mathbf{X}} & \mathbf{C}_{\mathbf{X Y}} \\
\mathbf{C}_{\mathbf{Y X}} & \mathbf{C}_{\mathbf{Y}}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{C}_{\mathbf{X}} & -\mathbf{C}_{Y X} \\
\mathbf{C}_{Y X} & \mathbf{C}_{\mathbf{X}}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{2} \operatorname{Re}\left(\mathbf{C}_{\mathbf{Z}}\right) & -\frac{1}{2} \operatorname{Im}\left(\mathbf{C}_{\mathbf{Z}}\right) \\
\frac{1}{2} \operatorname{Im}\left(\mathbf{C}_{\mathbf{Z}}\right) & \frac{1}{2} \operatorname{Re}\left(\mathbf{C}_{\mathbf{Z}}\right)
\end{array}\right]
$$

Circularly Symmetry and Pseudocovariance

Theorem

A complex Gaussian vector is circularly symmetric if and only if its mean and pseudocovariance are zero.

Proof.

- The forward direction was shown in the first slide.
- For reverse direction, assume \mathbf{Z} is a complex Gaussian vector with zero mean and zero pseudocovariance.
- The pdf of \mathbf{Z} is the the pdf of $\tilde{\mathbf{Z}}=\left[\begin{array}{ll}\mathbf{X} & \mathbf{Y}\end{array}\right]^{\top}$

$$
p(\mathbf{z})=p(\tilde{\mathbf{z}})=\frac{1}{(2 \pi)^{n}\left(\operatorname{det}\left(\mathbf{C}_{\tilde{\mathbf{z}}}\right)\right)^{\frac{1}{2}}} \exp \left(-\frac{1}{2} \tilde{\mathbf{z}}^{T} \mathbf{C}_{\tilde{\mathbf{z}}}^{-1} \tilde{\mathbf{z}}\right)
$$

where

$$
\mathbf{C}_{\tilde{z}}=\left[\begin{array}{cc}
\frac{1}{2} \operatorname{Re}\left(\mathbf{C}_{\mathbf{z}}\right) & -\frac{1}{2} \operatorname{Im}\left(\mathbf{C}_{\mathbf{z}}\right) \\
\frac{1}{2} \operatorname{Im}\left(\mathbf{C}_{\mathbf{z}}\right) & \frac{1}{2} \operatorname{Re}\left(\mathbf{C}_{\mathbf{z}}\right)
\end{array}\right]
$$

- We want to show that $e^{j \phi} \mathbf{Z}$ has the same pdf as \mathbf{Z}

Circularly Symmetry and Pseudocovariance

Proof Continued.

- $e^{j \phi} \mathbf{Z}$ has zero mean and zero pseudocovariance
- $\operatorname{cov}\left(e^{j \phi} \mathbf{Z}\right)=\operatorname{cov}(\mathbf{Z})$
- If \mathbf{Z} is a complex Gaussian vector, $e^{j \phi} \mathbf{Z}$ is a complex Gaussian vector (Assignment 4)
- Let $\mathbf{U}=e^{j \phi} \mathbf{Z}$ and $\tilde{\mathbf{U}}=\left[\begin{array}{ll}\operatorname{Re}(\mathbf{U}) & \operatorname{Im}(\mathbf{U})\end{array}\right]^{\top}$
- The pdf of \mathbf{U} is the the pdf of $\tilde{\mathbf{U}}$

$$
p(\mathbf{u})=p(\tilde{\mathbf{u}})=\frac{1}{(2 \pi)^{n}\left(\operatorname{det}\left(\mathbf{C}_{\tilde{\mathbf{u}}}\right)\right)^{\frac{1}{2}}} \exp \left(-\frac{1}{2} \tilde{\mathbf{u}}^{T} \mathbf{C}_{\tilde{u}}^{-1} \tilde{\mathbf{u}}\right)
$$

where

$$
\mathbf{C}_{\tilde{u}}=\left[\begin{array}{cc}
\frac{1}{2} \operatorname{Re}\left(\mathbf{C}_{\mathbf{u}}\right) & -\frac{1}{2} \operatorname{Im}\left(\mathbf{C}_{\mathbf{u}}\right) \\
\frac{1}{2} \operatorname{Im}\left(\mathbf{C}_{\mathbf{u}}\right) & \frac{1}{2} \operatorname{Re}\left(\mathbf{C}_{\mathbf{u}}\right)
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{2} \operatorname{Re}\left(\mathbf{C}_{\mathbf{z}}\right) & -\frac{1}{2} \operatorname{Im}\left(\mathbf{C}_{\mathbf{z}}\right) \\
\frac{1}{2} \operatorname{Im}\left(\mathbf{C}_{\mathbf{z}}\right) & \frac{1}{2} \operatorname{Re}\left(\mathbf{C}_{\mathbf{z}}\right)
\end{array}\right]
$$

- U has the same pdf as \mathbf{Z}

PDF of Circularly Symmetric Gaussian Vectors

- The pdf of a complex Gaussian vector $\mathbf{Z}=\mathbf{X}+j \mathbf{Y}$ is the pdf of $\tilde{\mathbf{z}}=\left[\begin{array}{ll}\mathbf{X} & \mathbf{Y}\end{array}\right]^{\top}$

$$
p(\mathbf{z})=p(\tilde{\mathbf{z}})=\frac{1}{(2 \pi)^{n}\left(\operatorname{det}\left(\mathbf{C}_{\tilde{\mathbf{z}}}\right)\right)^{\frac{1}{2}}} \exp \left(-\frac{1}{2}(\tilde{\mathbf{z}}-\tilde{\mathbf{m}})^{T} \mathbf{C}_{\tilde{\mathbf{z}}}^{-1}(\tilde{\mathbf{z}}-\tilde{\mathbf{m}})\right)
$$

- If \mathbf{Z} is circularly symmetric, the pdf is given by

$$
p(\mathbf{z})=\frac{1}{\pi^{n} \operatorname{det}\left(\mathbf{C}_{\mathbf{z}}\right)} \exp \left(-\mathbf{z}^{H} \mathbf{C}_{\mathbf{z}}^{-1} \mathbf{z}\right)
$$

We write $\mathbf{Z} \sim \mathcal{C N}\left(\mathbf{0}, \mathbf{C}_{\mathbf{z}}\right)$

Projection of Complex WGN is Circularly Symmetric

- Let $\psi_{1}(t), \psi_{2}(t), \ldots, \psi_{\kappa}(t)$ be a complex orthonormal basis
- Let $n(t)$ be complex white Gaussian noise with PSD $2 \sigma^{2}$
- Consider the projection of $n(t)$ onto the orthonormal basis

$$
\mathbf{N}=\left[\begin{array}{c}
\left\langle n, \psi_{1}\right\rangle \\
\vdots \\
\left\langle n, \psi_{K}\right\rangle
\end{array}\right]
$$

- \mathbf{N} is circularly symmetric and its pdf is

$$
p(\mathbf{n})=\frac{1}{\pi^{K} \operatorname{det}\left(\mathbf{C}_{\mathbf{N}}\right)} \exp \left(-\mathbf{n}^{H} \mathbf{C}_{\mathbf{N}}^{-1} \mathbf{n}\right)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{K}} \exp \left(-\frac{\|\mathbf{n}\|^{2}}{2 \sigma^{2}}\right)
$$

- If $\mathbf{Y}=\mathbf{s}_{i}+\mathbf{N}$, then the pdf of \mathbf{Y} is

$$
p(\mathbf{y})=\frac{1}{\left(2 \pi \sigma^{2}\right)^{K}} \exp \left(-\frac{\left\|\mathbf{y}-\mathbf{s}_{i}\right\|^{2}}{2 \sigma^{2}}\right)
$$

Reference

Circularly Symmetric Gaussian Random Vectors Robert G. Gallager
http://www.rle.mit.edu/rgallager/documents/
CircSymGauss.pdf

Thanks for your attention

[^0]: $\operatorname{cov}\left(e^{j \phi} \mathbf{Z}\right)=\operatorname{cov}(\mathbf{Z})$ holds for any zero mean \mathbf{Z} (even non-circulary symmetric \mathbf{Z})

