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Gaussian Random Vectors



Jointly Gaussian Random Variables

Definition (Jointly Gaussian RVs)
Random variables X1,X2, . . . ,Xn are jointly Gaussian if any non-trivial linear
combination is a Gaussian random variable.

a1X1 + · · ·+ anXn is Gaussian for all (a1, . . . , an) ∈ Rn \ 0

Example (Not Jointly Gaussian)
X ∼ N(0, 1)

Y =

{
X , if |X | > 1
−X , if |X | ≤ 1

Y ∼ N(0, 1) and X + Y is not Gaussian.
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Gaussian Random Vector

Definition (Gaussian Random Vector)
A random vector X = (X1, . . . ,Xn)

T whose components are jointly Gaussian.

Notation
X ∼ N(m,C) where

m = E [X] is the n × 1 mean vector

C = E
[
(X−m)(X−m)T

]
is the n × n covariance matrix

mi = E [Xi ], Cij = E [(Xi −mi)(Xj −mj)] = cov(Xi ,Xj)

Definition (Joint Gaussian Density)
For a Gaussian random vector, C is invertible and the joint density is given by

p(x) =
1√

(2π)n det(C)
exp

(
−1

2
(x−m)T C−1(x−m)

)
For derivation, see Problems 3.31(f) and 3.32 in Madhow’s book.
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Uncorrelated Jointly Gaussian RVs are Independent
If X1, . . . ,Xn are jointly Gaussian and pairwise uncorrelated, then they are
independent. For pairwise uncorrelated random variables,

Cij = E [(Xi −mi)(Xj −mj)] =

{
0 if i 6= j
σ2

i otherwise.

The joint probability density function is given by

p(x) =
1√

(2π)n det(C)
exp

(
−1

2
(x−m)T C−1(x−m)

)

=
n∏

i=1

1√
2πσ2

i

exp
(
− (xi −mi)

2

2σ2
i

)

where mi = E [Xi ] and σ2
i = var(Xi).
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Uncorrelated Gaussian RVs may not be Independent

Example

• X ∼ N(0, 1)

• W is equally likely to be +1 or -1

• W is independent of X

• Y = WX

• Y ∼ N(0, 1)

• X and Y are uncorrelated

• X and Y are not independent
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Gaussian Random Processes



Gaussian Random Process

Definition
A random process X (t) is Gaussian if its samples X (t1), . . . ,X (tn) are jointly
Gaussian for any n ∈ N and distinct sample locations t1, t2, . . . , tn.

Let X =
[
X (t1) · · · X (tn)

]T be the vector of samples. The joint density is
given by

p(x) =
1√

(2π)n det(C)
exp

(
−1

2
(x−m)T C−1(x−m)

)
where

m = E [X], C = E
[
(X−m)(X−m)T

]
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Properties of Gaussian Random Process
• The mean and autocorrelation functions completely characterize a

Gaussian random process.

• Wide-sense stationary Gaussian processes are strictly stationary.

• If the input to a stable linear filter is a Gaussian random process, the
output is also a Gaussian random process.

X (t) h(t) Y (t)
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White Gaussian Noise

Definition
A zero mean WSS Gaussian random process with power spectral density

Sn(f ) =
N0

2
.

N0
2 is termed the two-sided PSD and has units Watts per Hertz.

Remarks
• Autocorrelation function Rn(τ) =

N0
2 δ(τ)

• Infinite Power! Ideal model of Gaussian noise occupying more
bandwidth than the signals of interest.
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White Gaussian Noise through Correlators
• Consider the output of a correlator with WGN input

Z =

∫ ∞
−∞

n(t)u(t) dt = 〈n, u〉

where u(t) is a deterministic finite-energy signal
• Z is a Gaussian random variable
• The mean of Z is

E [Z ] =

∫ ∞
−∞

E [n(t)] u(t) dt = 0

• The variance of Z is

var(Z ) = E
[
(〈n, u〉)2

]
= E

[∫
n(t)u(t) dt

∫
n(s)u(s) ds

]
=

∫ ∫
u(t)u(s)E [n(t)n(s)] dt ds

=

∫ ∫
u(t)u(s)

N0

2
δ(t − s) dt ds

=
N0

2

∫
u2(t) dt =

N0

2
‖u‖2
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White Gaussian Noise through Correlators

Proposition
Let u1(t) and u2(t) be linearly independent finite-energy signals and let n(t)
be WGN with PSD Sn(f ) = N0

2 . Then 〈n, u1〉 and 〈n, u2〉 are jointly Gaussian
with covariance

cov (〈n, u1〉, 〈n, u2〉) =
N0

2
〈u1, u2〉.

Proof
To prove that 〈n, u1〉 and 〈n, u2〉 are jointly Gaussian, consider a non-trivial
linear combination a〈n, u1〉+ b〈n, u2〉

a〈n, u1〉+ b〈n, u2〉 =
∫

n(t) [au1(t) + bu2(t)] dt .

This is the result of passing n(t) through a correlator. So it is a Gaussian
random variable.
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White Gaussian Noise through Correlators

Proof (continued)

cov (〈n, u1〉, 〈n, u2〉) = E [〈n, u1〉〈n, u2〉]

= E
[∫

n(t)u1(t) dt
∫

n(s)u2(s) ds
]

=

∫ ∫
u1(t)u2(s)E [n(t)n(s)] dt ds

=

∫ ∫
u1(t)u2(s)

N0

2
δ(t − s) dt ds

=
N0

2

∫
u1(t)u2(t) dt

=
N0

2
〈u1, u2〉

If u1(t) and u2(t) are orthogonal, 〈n, u1〉 and 〈n, u2〉 are independent.
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Thanks for your attention
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