Gaussian Random Vectors and Processes

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

September 19, 2013

Gaussian Random Vectors

Jointly Gaussian Random Variables

Definition (Jointly Gaussian RVs)

Random variables $X_{1}, X_{2}, \ldots, X_{n}$ are jointly Gaussian if any non-trivial linear combination is a Gaussian random variable.

$$
a_{1} X_{1}+\cdots+a_{n} X_{n} \text { is Gaussian for all }\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n} \backslash \mathbf{0}
$$

Example (Not Jointly Gaussian)
$X \sim N(0,1)$

$$
Y=\left\{\begin{array}{rr}
X, & \text { if }|X|>1 \\
-X, & \text { if }|X| \leq 1
\end{array}\right.
$$

$Y \sim N(0,1)$ and $X+Y$ is not Gaussian.

Gaussian Random Vector

Definition (Gaussian Random Vector)

A random vector $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)^{T}$ whose components are jointly Gaussian.
Notation
$\mathbf{X} \sim N(\mathbf{m}, \mathbf{C})$ where

$$
\begin{aligned}
\mathbf{m} & =E[\mathbf{X}] \text { is the } n \times 1 \text { mean vector } \\
\mathbf{C} & =E\left[(\mathbf{X}-\mathbf{m})(\mathbf{X}-\mathbf{m})^{T}\right] \text { is the } n \times n \text { covariance matrix }
\end{aligned}
$$

$m_{i}=E\left[X_{i}\right], C_{i j}=E\left[\left(X_{i}-m_{i}\right)\left(X_{j}-m_{j}\right)\right]=\operatorname{cov}\left(X_{i}, X_{j}\right)$

Definition (Joint Gaussian Density)

For a Gaussian random vector, \mathbf{C} is invertible and the joint density is given by

$$
p(\mathbf{x})=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(\mathbf{C})}} \exp \left(-\frac{1}{2}(\mathbf{x}-\mathbf{m})^{T} \mathbf{C}^{-1}(\mathbf{x}-\mathbf{m})\right)
$$

For derivation, see Problems 3.31(f) and 3.32 in Madhow's book.

Uncorrelated Jointly Gaussian RVs are Independent

If X_{1}, \ldots, X_{n} are jointly Gaussian and pairwise uncorrelated, then they are independent. For pairwise uncorrelated random variables,

$$
C_{i j}=E\left[\left(X_{i}-m_{i}\right)\left(X_{j}-m_{j}\right)\right]= \begin{cases}0 & \text { if } i \neq j \\ \sigma_{i}^{2} & \text { otherwise } .\end{cases}
$$

The joint probability density function is given by

$$
\begin{aligned}
p(\mathbf{x}) & =\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(\mathbf{C})}} \exp \left(-\frac{1}{2}(\mathbf{x}-\mathbf{m})^{T} \mathbf{C}^{-1}(\mathbf{x}-\mathbf{m})\right) \\
& =\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \sigma_{i}^{2}}} \exp \left(-\frac{\left(x_{i}-m_{i}\right)^{2}}{2 \sigma_{i}^{2}}\right)
\end{aligned}
$$

where $m_{i}=E\left[X_{i}\right]$ and $\sigma_{i}^{2}=\operatorname{var}\left(X_{i}\right)$.

Uncorrelated Gaussian RVs may not be Independent

Example

- $X \sim N(0,1)$
- W is equally likely to be +1 or -1
- W is independent of X
- $Y=W X$
- $Y \sim N(0,1)$
- X and Y are uncorrelated
- X and Y are not independent

Gaussian Random Processes

Gaussian Random Process

Definition

A random process $X(t)$ is Gaussian if its samples $X\left(t_{1}\right), \ldots, X\left(t_{n}\right)$ are jointly Gaussian for any $n \in \mathbb{N}$ and distinct sample locations $t_{1}, t_{2}, \ldots, t_{n}$.
Let $\mathbf{X}=\left[\begin{array}{lll}X\left(t_{1}\right) & \cdots & X\left(t_{n}\right)\end{array}\right]^{\top}$ be the vector of samples. The joint density is given by

$$
p(\mathbf{x})=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(\mathbf{C})}} \exp \left(-\frac{1}{2}(\mathbf{x}-\mathbf{m})^{T} \mathbf{C}^{-1}(\mathbf{x}-\mathbf{m})\right)
$$

where

$$
\mathbf{m}=E[\mathbf{X}], \quad \mathbf{C}=E\left[(\mathbf{X}-\mathbf{m})(\mathbf{X}-\mathbf{m})^{\top}\right]
$$

Properties of Gaussian Random Process

- The mean and autocorrelation functions completely characterize a Gaussian random process.
- Wide-sense stationary Gaussian processes are strictly stationary.
- If the input to a stable linear filter is a Gaussian random process, the output is also a Gaussian random process.

White Gaussian Noise

Definition

A zero mean WSS Gaussian random process with power spectral density

$$
S_{n}(f)=\frac{N_{0}}{2} .
$$

$\frac{N_{0}}{2}$ is termed the two-sided PSD and has units Watts per Hertz.

Remarks

- Autocorrelation function $R_{n}(\tau)=\frac{N_{0}}{2} \delta(\tau)$
- Infinite Power! Ideal model of Gaussian noise occupying more bandwidth than the signals of interest.

White Gaussian Noise through Correlators

- Consider the output of a correlator with WGN input

$$
Z=\int_{-\infty}^{\infty} n(t) u(t) d t=\langle n, u\rangle
$$

where $u(t)$ is a deterministic finite-energy signal

- Z is a Gaussian random variable
- The mean of Z is

$$
E[Z]=\int_{-\infty}^{\infty} E[n(t)] u(t) d t=0
$$

- The variance of Z is

$$
\begin{aligned}
\operatorname{var}(Z) & =E\left[(\langle n, u\rangle)^{2}\right]=E\left[\int n(t) u(t) d t \int n(s) u(s) d s\right] \\
& =\iint u(t) u(s) E[n(t) n(s)] d t d s \\
& =\iint u(t) u(s) \frac{N_{0}}{2} \delta(t-s) d t d s \\
& =\frac{N_{0}}{2} \int u^{2}(t) d t=\frac{N_{0}}{2}\|u\|^{2}
\end{aligned}
$$

White Gaussian Noise through Correlators

Proposition

Let $u_{1}(t)$ and $u_{2}(t)$ be linearly independent finite-energy signals and let $n(t)$ be WGN with PSD $S_{n}(f)=\frac{N_{0}}{2}$. Then $\left\langle n, u_{1}\right\rangle$ and $\left\langle n, u_{2}\right\rangle$ are jointly Gaussian with covariance

$$
\operatorname{cov}\left(\left\langle n, u_{1}\right\rangle,\left\langle n, u_{2}\right\rangle\right)=\frac{N_{0}}{2}\left\langle u_{1}, u_{2}\right\rangle .
$$

Proof

To prove that $\left\langle n, u_{1}\right\rangle$ and $\left\langle n, u_{2}\right\rangle$ are jointly Gaussian, consider a non-trivial linear combination $a\left\langle n, u_{1}\right\rangle+b\left\langle n, u_{2}\right\rangle$

$$
a\left\langle n, u_{1}\right\rangle+b\left\langle n, u_{2}\right\rangle=\int n(t)\left[a u_{1}(t)+b u_{2}(t)\right] d t
$$

This is the result of passing $n(t)$ through a correlator. So it is a Gaussian random variable.

White Gaussian Noise through Correlators

Proof (continued)

$$
\begin{aligned}
\operatorname{cov}\left(\left\langle n, u_{1}\right\rangle,\left\langle n, u_{2}\right\rangle\right) & =E\left[\left\langle n, u_{1}\right\rangle\left\langle n, u_{2}\right\rangle\right] \\
& =E\left[\int n(t) u_{1}(t) d t \int n(s) u_{2}(s) d s\right] \\
& =\iint u_{1}(t) u_{2}(s) E[n(t) n(s)] d t d s \\
& =\iint u_{1}(t) u_{2}(s) \frac{N_{0}}{2} \delta(t-s) d t d s \\
& =\frac{N_{0}}{2} \int u_{1}(t) u_{2}(t) d t \\
& =\frac{N_{0}}{2}\left\langle u_{1}, u_{2}\right\rangle
\end{aligned}
$$

If $u_{1}(t)$ and $u_{2}(t)$ are orthogonal, $\left\langle n, u_{1}\right\rangle$ and $\left\langle n, u_{2}\right\rangle$ are independent.

Thanks for your attention

