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Additive White Gaussian Noise Channel

AWGN
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M-ary Signaling in AWGN Channel

One of M continuous-time signals si(t), ..., su(t) is sent
The received signal is the transmitted signal corrupted by AWGN
M hypotheses with prior probabilities 7j, i=1,...,M

Hy o y(t) = si(t) + n(t)
Ho  : y(t) = sa(t) + n(t)

Hy : y(t) =su(t) + n(t)
Random variables are easier to handle than random processes

We derive an equivalent M-ary hypothesis testing problem involving
only random vectors
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Restriction to Signal Space is Optimal

Theorem
For the M-ary hypothesis testing given by

Hi o y(t) = si(t) + n(t)

Ha = y(t) = su(t) + n(1)

there is no loss in detection performance by using the optimal decision rule
for the following M-ary hypothesis testing problem

Hi : Y=s;+N

Hy : Y=sy+N

where Y, s; and N are the projections of y(t), si(t) and n(t) respectively onto
the signal space spanned by {s;i(t)}.



Projection of Signals onto Signal Space

Consider an orthonormal basis {;(t)|i =1, ..., K} for the space
spanned by {si(t)|i=1,..., M}
Projection of s;(t) onto the signal space is

si=[(sgn) o (k)]
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Projection of Observed Signal onto Signal Space

e Projection of y(t) onto the signal space is

Y= [y - k)]
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Projection of Noise onto Signal Space

e Projection of n(t) onto the signal space is

N = [<n> ¢1>

<n7 wK>] ’
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Proof of Theorem
Y=[(y, ) - (vw)]”

Component of y(t) orthogonal to the signal space is

K

yr(t) =y(t) = (y, dii(t)

i=1

y(t) is equivalent to (Y, y= (1))
We claim that y(¢) is an irrelevant statistic

K

yrty = y(t) = {y, ity

i=1

K
= Zsl+nw/¢/
1

j=
K

= Z s ) i(t) (t)
Jj=1

where n'(t) is the component of n(t) orthogonal to the signal space.

e n*(t) is independent of which s;(t) was transmitted which makes y*(t)
an irrelevant statistic.
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M-ary Signaling in AWGN Channel

e M hypotheses with prior probabilities 7, i=1,...,M
H, : Y=s1+N

Hy : Y=sy+N

Y o= [y o )]’
sio= [isnen) - (snuw)]
N = [(ne) - (nwe)]

e N~ N(m,C)where m =0and C = ¢l
cov ((n, 1), (n,12)) = 0% (W1, 1))
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Optimal Receiver for the AWGN Channel

Theorem (MPE Decision Rule)
The MPE decision rule for M-ary signaling in AWGN channel is given by

oupe(y) = argmin|ly — si||? — 26° log
1<i<M
12
= argmax(y,s;) — @ + o?log m;
1<i<M
Proof
ompe(y) = argmaxmip;(y)

1<i<M

argmax 7; exp (—u)

1<i<M 202
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MPE Decision Rule
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Continuous-Time Version of MPE Rule

e Discrete-time version

2
s.

Supe(y) = argmax(y,s;) — % + o?log m;

1<i<M

e Continuous-time version

_ ) |Isil|® 2 )
ompe(y) = argmax(y,si) — - + o° log

1<i<M
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MPE Decision Rule Example

si(t) s2(t) Ss(t)

Let7T1 =Ty = =
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ML Receiver for the AWGN Channel

Theorem (ML Decision Rule)
The ML decision rule for M-ary signaling in AWGN channel is given by

om(y) = argminlly —s;|?
1<i<M
112
- argmax(y,s;)——”s'H
1<i<M 2
Proof
om(y) = argmaxpi(y)
1<i<M

2
argmax exp (—7”" — s )

1<i<M 202
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ML Decision Rule
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ML Decision Rule
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Continuous-Time Version of ML Rule

e Discrete-time version

Sm(Y)

e Continuous-time version

S (y)

s.
argmax(y, s;) — sl
1<i<M 2
2
s
argmax(y, s;) — s
1<i<M 2
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ML Decision Rule Example

si(t) s2(t) Ss(t)
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ML Decision Rule for Antipodal Signaling

si(f) sa(t)

= argmax(y, s;)
1<i<2

m(y) = argmax(y, s;) —

|Isill®
1<i<2 2

m(y)=1 < (y,81) 2 (¥, 8) < (¥,81)>0

)
(. s1) = / y(7)s1(r) dr = (v * sue)(T)

where sye(t) = s1(T — t) is the matched filter.
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Thanks for your attention
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