Optimal Receiver for the AWGN Channel

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

September 23, 2013

Additive White Gaussian Noise Channel

- s(t) Transmitted Signal
- y(t) Received Signal
- n(t) White Gaussian Noise

$$S_n(f) = \frac{N_0}{2} = \sigma^2$$

$$R_n(\tau) = \sigma^2 \delta(\tau)$$

M-ary Signaling in AWGN Channel

- One of M continuous-time signals $s_1(t), \ldots, s_M(t)$ is sent
- The received signal is the transmitted signal corrupted by AWGN
- M hypotheses with prior probabilities π_i , i = 1, ..., M

$$H_1$$
: $y(t) = s_1(t) + n(t)$
 H_2 : $y(t) = s_2(t) + n(t)$
 \vdots : \vdots
 H_M : $y(t) = s_M(t) + n(t)$

- Random variables are easier to handle than random processes
- We derive an equivalent M-ary hypothesis testing problem involving only random vectors

Restriction to Signal Space is Optimal

Theorem

For the M-ary hypothesis testing given by

$$H_1$$
 : $y(t) = s_1(t) + n(t)$
 \vdots \vdots
 H_M : $y(t) = s_M(t) + n(t)$

there is no loss in detection performance by using the optimal decision rule for the following M-ary hypothesis testing problem

$$H_1$$
 : $\mathbf{Y} = \mathbf{s}_1 + \mathbf{N}$
 \vdots \vdots
 H_M : $\mathbf{Y} = \mathbf{s}_M + \mathbf{N}$

where \mathbf{Y} , \mathbf{s}_i and \mathbf{N} are the projections of y(t), $s_i(t)$ and n(t) respectively onto the signal space spanned by $\{s_i(t)\}$.

Projection of Signals onto Signal Space

- Consider an orthonormal basis $\{\psi_i(t)|i=1,\ldots,K\}$ for the space spanned by $\{s_i(t)|i=1,\ldots,M\}$
- Projection of $s_i(t)$ onto the signal space is

$$\mathbf{s}_i = \begin{bmatrix} \langle \mathbf{s}_i, \psi_1 \rangle & \cdots & \langle \mathbf{s}_i, \psi_K \rangle \end{bmatrix}^T$$

Projection of Observed Signal onto Signal Space

• Projection of y(t) onto the signal space is

$$\mathbf{Y} = \begin{bmatrix} \langle y, \psi_1 \rangle & \cdots & \langle y, \psi_K \rangle \end{bmatrix}^T$$

Projection of Noise onto Signal Space

• Projection of *n*(*t*) onto the signal space is

$$\mathbf{N} = \begin{bmatrix} \langle n, \psi_1 \rangle & \cdots & \langle n, \psi_K \rangle \end{bmatrix}^T$$

Proof of Theorem

- $\mathbf{Y} = \begin{bmatrix} \langle y, \psi_1 \rangle & \cdots & \langle y, \psi_K \rangle \end{bmatrix}^T$
- Component of y(t) orthogonal to the signal space is

$$y^{\perp}(t) = y(t) - \sum_{i=1}^{K} \langle y, \psi_i \rangle \psi_i(t)$$

- y(t) is equivalent to $(\mathbf{Y}, y^{\perp}(t))$
- We claim that $y^{\perp}(t)$ is an irrelevant statistic

$$y^{\perp}(t) = y(t) - \sum_{i=1}^{K} \langle y, \psi_i \rangle \psi_i(t)$$

$$= s_i(t) + n(t) - \sum_{j=1}^{K} \langle s_i + n, \psi_j \rangle \psi_j(t)$$

$$= n(t) - \sum_{i=1}^{K} \langle n, \psi_i \rangle \psi_i(t) = n^{\perp}(t)$$

where $n^{\perp}(t)$ is the component of n(t) orthogonal to the signal space.

• $n^{\perp}(t)$ is independent of which $s_i(t)$ was transmitted which makes $y^{\perp}(t)$ an irrelevant statistic.

M-ary Signaling in AWGN Channel

• *M* hypotheses with prior probabilities π_i , i = 1, ..., M

$$\begin{array}{lll} H_1 & : & \boldsymbol{Y} = \boldsymbol{s}_1 + \boldsymbol{N} \\ \vdots & & \vdots \\ H_M & : & \boldsymbol{Y} = \boldsymbol{s}_M + \boldsymbol{N} \end{array}$$

$$\mathbf{Y} = \begin{bmatrix} \langle y, \psi_1 \rangle & \cdots & \langle y, \psi_K \rangle \end{bmatrix}^T$$

$$\mathbf{s}_i = \begin{bmatrix} \langle \mathbf{s}_i, \psi_1 \rangle & \cdots & \langle \mathbf{s}_i, \psi_K \rangle \end{bmatrix}^T$$

$$\mathbf{N} = \begin{bmatrix} \langle n, \psi_1 \rangle & \cdots & \langle n, \psi_K \rangle \end{bmatrix}^T$$

• N
$$\sim$$
 N(m, C) where m = 0 and C = σ^2 I
$$cov(\langle n, \psi_1 \rangle, \langle n, \psi_2 \rangle) = \sigma^2 \langle \psi_1, \psi_2 \rangle.$$

Optimal Receiver for the AWGN Channel

Theorem (MPE Decision Rule)

The MPE decision rule for M-ary signaling in AWGN channel is given by

$$\begin{split} \delta_{MPE}(\mathbf{y}) &= & \underset{1 \leq i \leq M}{\operatorname{argmin}} \|\mathbf{y} - \mathbf{s}_i\|^2 - 2\sigma^2 \log \pi_i \\ &= & \underset{1 \leq i \leq M}{\operatorname{argmax}} \langle \mathbf{y}, \mathbf{s}_i \rangle - \frac{\|\mathbf{s}_i\|^2}{2} + \sigma^2 \log \pi_i \end{split}$$

Proof

$$\begin{array}{lcl} \delta_{\mathit{MPE}}(\mathbf{y}) & = & \underset{1 \leq i \leq \mathit{M}}{\operatorname{argmax}} \, \pi_i \rho_i(\mathbf{y}) \\ \\ & = & \underset{1 \leq i < \mathit{M}}{\operatorname{argmax}} \, \pi_i \exp\left(-\frac{\|\mathbf{y} - \mathbf{s}_i\|^2}{2\sigma^2}\right) \end{array}$$

MPE Decision Rule

Continuous-Time Version of MPE Rule

Discrete-time version

$$\delta_{MPE}(\mathbf{y}) = \underset{1 \leq i \leq M}{\operatorname{argmax}} \langle \mathbf{y}, \mathbf{s}_i \rangle - \frac{\|\mathbf{s}_i\|^2}{2} + \sigma^2 \log \pi_i$$

Continuous-time version

$$\delta_{MPE}(y) = \underset{1 \leq i \leq M}{\operatorname{argmax}} \langle y, s_i \rangle - \frac{\|s_i\|^2}{2} + \sigma^2 \log \pi_i$$

MPE Decision Rule Example

Let
$$\pi_1 = \pi_2 = \frac{1}{3}$$
, $\pi_3 = \pi_4 = \frac{1}{6}$, $\sigma^2 = 1$, and $\log 2 = 0.69$.

ML Receiver for the AWGN Channel

Theorem (ML Decision Rule)

The ML decision rule for M-ary signaling in AWGN channel is given by

$$\begin{array}{lcl} \delta_{\textit{ML}}(\boldsymbol{y}) & = & \underset{1 \leq i \leq \textit{M}}{\operatorname{argmin}} \|\boldsymbol{y} - \boldsymbol{s}_i\|^2 \\ \\ & = & \underset{1 \leq i \leq \textit{M}}{\operatorname{argmax}} \langle \boldsymbol{y}, \boldsymbol{s}_i \rangle - \frac{\|\boldsymbol{s}_i\|^2}{2} \end{array}$$

Proof

$$\begin{array}{lcl} \delta_{\mathit{ML}}(\mathbf{y}) & = & \underset{1 \leq i \leq \mathit{M}}{\operatorname{argmax}} \, p_i(\mathbf{y}) \\ & = & \underset{1 \leq i \leq \mathit{M}}{\operatorname{argmax}} \exp \left(- \frac{\|\mathbf{y} - \mathbf{s}_i\|^2}{2\sigma^2} \right) \end{array}$$

ML Decision Rule

ML Decision Rule

Continuous-Time Version of ML Rule

Discrete-time version

$$\delta_{ML}(\mathbf{y}) = \underset{1 \leq i \leq M}{\operatorname{argmax}} \langle \mathbf{y}, \mathbf{s}_i \rangle - \frac{\|\mathbf{s}_i\|^2}{2}$$

Continuous-time version

$$\delta_{ML}(y) = \underset{1 \leq i \leq M}{\operatorname{argmax}} \langle y, s_i \rangle - \frac{\|s_i\|^2}{2}$$

ML Decision Rule Example

ML Decision Rule for Antipodal Signaling

Thanks for your attention