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Motivation



System Model used to Derive Optimal Receivers

Channels(t) y(t)

y(t) = s(t) + n(t)

s(t) Transmitted Signal

y(t) Received Signal

n(t) Noise

Simplified System Model. Does Not Account For

• Propagation Delay

• Carrier Frequency Mismatch Between Transmitter and Receiver

• Clock Frequency Mismatch Between Transmitter and Receiver
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Why Study the Simplified System Model?
• Consider the effect of propagation delay

Channels(t) y(t)

y(t) = s(t − τ) + n(t)

• If the receiver can estimate τ , the simplified system model is valid

• Receivers estimate propagation delay, carrier frequency and clock
frequency before demodulation

• Once these unknown parameters are estimated, the simplified system
model is valid

• Then why not study parameter estimation first?

• Hypothesis testing is easier to learn than parameter estimation
• Historical reasons
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Parameter Estimation



Parameter Estimation
• Hypothesis testing was about making a choice between discrete states

of nature

• Parameter or point estimation is about choosing from a continuum of
possible states

Example

• Consider a manufacturer of clothes for newborn babies

• She wants her clothes to fit at least 50% of newborn babies. Clothes
can be loose but not tight. She also wants to minimize material used.

• Since babies are made up of a large number of atoms, their length is a
Gaussian random variable (by Central Limit Theorem)

Baby Length ∼ N (µ, σ2)

• Only knowledge of µ is required to achieve her goal of 50% fit

• But µ is unknown and she is interested in estimating it

• What is a good estimator of µ? If she wants her clothes to fit at least
75% of the newborn babies, is knowledge of µ enough?
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System Model for Parameter Estimation
• Consider a family of distributions

Y ∼ Pθ, θ ∈ Λ

where the observation vector Y ∈ Γ ⊆ Rn and Λ ⊆ Rm is the parameter
space. θ itself can be a realization of a random variable Θ

Example

Y ∼ N (µ, σ2)

where µ and σ are unknown. Here Γ = R, θ =
[
µ σ

]T , Λ = R2.
The parameters µ and σ can themselves be random variables.

• The goal of parameter estimation is to find θ given Y

• An estimator is a function from the observation space to the parameter
space

θ̂ : Γ→ Λ
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Which is the Optimal Estimator?
• Assume there is a cost function C

C : Λ× Λ→ R

such that C[a,θ] is the cost of estimating the true value of θ as a

• Examples of cost functions for scalar θ

Squared Error C[a, θ] = (a− θ)2

Absolute Error C[a, θ] = |a− θ|

Threshold Error C[a, θ] =

{
0 if |a− θ| ≤ ∆
1 if |a− θ| > ∆
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Which is the Optimal Estimator?
• Suppose that the parameter θ is the realization of a random variable Θ

• With an estimator θ̂ we associate a conditional cost or risk conditioned
on θ

rθ(θ̂) = Eθ

{
C
[
θ̂(Y),θ

]}
• The average risk or Bayes risk is given by

R(θ̂) = E
{

rΘ(θ̂)
}

• The optimal estimator is the one which minimizes the Bayes risk
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Which is the Optimal Estimator?
• Given that

rθ(θ̂) = Eθ

{
C
[
θ̂(Y),θ

]}
= E

{
C
[
θ̂(Y),Θ

] ∣∣∣∣Θ = θ

}
the average risk or Bayes risk is given by

R(θ̂) = E
{

C
[
θ̂(Y),Θ

]}
= E

{
E
{

C
[
θ̂(Y),Θ

] ∣∣∣∣Y}}
=

∫
E
{

C
[
θ̂(Y),Θ

] ∣∣∣∣Y = y
}

pY(y) dy

• The optimal estimate for θ can be found by minimizing for each Y = y
the posterior cost

E
{

C
[
θ̂(y),Θ

] ∣∣∣∣Y = y
}
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Minimum-Mean-Squared-Error (MMSE) Estimation
• Consider a scalar parameter θ

• C[a, θ] = (a− θ)2

• The posterior cost is given by

E
{

(θ̂(y)−Θ)2
∣∣∣∣Y = y

}
=

[
θ̂(y)

]2

−2θ̂(y)E
{

Θ

∣∣∣∣Y = y
}

+E
{

Θ2
∣∣∣∣Y = y

}
• Differentiating posterior cost wrt θ̂(y), the Bayes estimate is

θ̂MMSE (y) = E
{

Θ

∣∣∣∣Y = y
}
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Example: MMSE Estimation
• Suppose X and Y are jointly Gaussian random variables

• Let the joint pdf be given by

pXY (x , y) =
1

2π|C| 12
exp

(
−1

2
(s− µ)T C−1(s− µ)

)

where s =

[
x
y

]
, µ =

[
µx

µy

]
and C =

[
σ2

x ρσxσy

ρσxσy σ2
y

]
• Suppose Y is observed and we want to estimate X

• The MMSE estimate of X is

X̂MMSE (y) = E
[
X
∣∣∣∣Y = y

]
• The conditional density of X given Y = y is

p(x |y) =
pXY (x , y)

pY (y)
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Example: MMSE Estimation
• The conditional density of X given Y = y is a Gaussian density with

mean
µX |y = µx +

σx

σy
ρ(y − µy )

and variance
σ2

X |y = (1− ρ2)σ2
x

• Thus the MMSE estimate of X given Y = y is

X̂MMSE (y) = µx +
σx

σy
ρ(y − µy )
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Maximum A Posteriori (MAP) Estimation
• In some situations, the conditional mean may be difficult to compute

• An alternative is to use MAP estimation

• The MAP estimator is given by

θ̂MAP(y) = argmax
θ

p (θ|y)

where p is the conditional density of Θ given Y.

• It can be obtained as the optimal estimator for the threshold cost
function

C[a, θ] =

{
0 if |a− θ| ≤ ∆
1 if |a− θ| > ∆

for small ∆ > 0
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Maximum A Posteriori (MAP) Estimation
• For the threshold cost function, we have1

E
{

C
[
θ̂(y),Θ

] ∣∣∣∣Y = y
}

=

∫ ∞
−∞

C[θ̂(y), θ]p (θ|y) dθ

=

∫ θ̂(y)−∆

−∞
p (θ|y) dθ +

∫ ∞
θ̂(y)+∆

p (θ|y) dθ

=

∫ ∞
−∞

p (θ|y) dθ −
∫ θ̂(y)+∆

θ̂(y)−∆

p (θ|y) dθ

= 1−
∫ θ̂(y)+∆

θ̂(y)−∆

p (θ|y) dθ

• The Bayes estimate is obtained by maximizing the integral in the last
equality

1Assume a scalar parameter θ for illustration
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Maximum A Posteriori (MAP) Estimation

θ̂(y)

p(θ|y) ∫ θ̂(y)+∆

θ̂(y)−∆
p (θ|y)

• The shaded area is the integral
∫ θ̂(y)+∆

θ̂(y)−∆
p (θ|y) dθ

• To maximize this integral, the location of θ̂(y) should be chosen to be
the value of θ which maximizes p(θ|y)
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Maximum A Posteriori (MAP) Estimation

θ̂MAP(y)

p(θ|y) ∫ θ̂(y)+∆

θ̂(y)−∆
p (θ|y)

• This argument is not airtight as p(θ|y) may not be symmetric at the
maximum

• But the MAP estimator is widely used as it is easier to compute than the
MMSE estimator
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Maximum Likelihood (ML) Estimation
• The ML estimator is given by

θ̂ML(y) = argmax
θ

p (y|θ)

where p is the conditional density of Y given Θ.

• It is the same as the MAP estimator when the prior probability
distribution of Θ is uniform

θ̂MAP(y) = argmax
θ

p (θ|y) = argmax
θ

p (θ, y)

p(y)
= argmax

θ

p (y|θ) p(θ)

p(y)

• It is also used when the prior distribution is not known
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Example 1: ML Estimation
• Suppose we observe Yi , i = 1, 2, . . . ,M such that

Yi ∼ N (µ, σ2)

where Yi ’s are independent, µ is unknown and σ2 is known

• The ML estimate is given by

µ̂ML(y) =
1
M

M∑
i=1

yi
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Example 2: ML Estimation
• Suppose we observe Yi , i = 1, 2, . . . ,M such that

Yi ∼ N (µ, σ2)

where Yi ’s are independent, both µ and σ2 are unknown

• The ML estimates are given by

µ̂ML(y) =
1
M

M∑
i=1

yi

σ̂2
ML(y) =

1
M

M∑
i=1

(yi − µ̂ML(y))2
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Example 3: ML Estimation
• Suppose we observe Yi , i = 1, 2, . . . ,M such that

Yi ∼ Bernoulli(p)

where Yi ’s are independent and p is unknown

• The ML estimate of p is given by

p̂ML(y) =
1
M

M∑
i=1

yi
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Example 4: ML Estimation
• Suppose we observe Yi , i = 1, 2, . . . ,M such that

Yi ∼ Uniform[0, θ]

where Yi ’s are independent and θ is unknown

• The ML estimate of θ is given by

θ̂ML(y) = max (y1, y2, . . . , yM−1, yM )
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Thanks for your attention
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