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Motivation



System Model used to Derive Optimal Receivers

() ——{Ghamnat—> 10

y() = s(t) + n(t)

s(t) Transmitted Signal
y(t) Received Signal
n(t) Noise
Simplified System Model. Does Not Account For
e Propagation Delay
e Carrier Frequency Mismatch Between Transmitter and Receiver
e Clock Frequency Mismatch Between Transmitter and Receiver
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Why Study the Simplified System Model?

Consider the effect of propagation delay

s(t) ——{Ghamei— ()

y(t) = s(t—7) +n(1)
If the receiver can estimate 7, the simplified system model is valid

Receivers estimate propagation delay, carrier frequency and clock
frequency before demodulation

Once these unknown parameters are estimated, the simplified system
model is valid

Then why not study parameter estimation first?

e Hypothesis testing is easier to learn than parameter estimation
e Historical reasons



Parameter Estimation



Parameter Estimation
Hypothesis testing was about making a choice between discrete states
of nature

Parameter or point estimation is about choosing from a continuum of
possible states

Example

Consider a manufacturer of clothes for newborn babies

She wants her clothes to fit at least 50% of newborn babies. Clothes
can be loose but not tight. She also wants to minimize material used.

Since babies are made up of a large number of atoms, their length is a
Gaussian random variable (by Central Limit Theorem)
Baby Length ~ N (i, o%)

Only knowledge of p is required to achieve her goal of 50% fit
But 1 is unknown and she is interested in estimating it

What is a good estimator of 1? If she wants her clothes to fit at least
75% of the newborn babies, is knowledge of 1 enough?



System Model for Parameter Estimation
e Consider a family of distributions
Y~Pg, BcA
where the observation vector Y € ' C R" and A C R” is the parameter
space. 0 itself can be a realization of a random variable ©

Example

Y ~ N(p,0%)

where p and o are unknown. Here T =R, 6 = [ 0] T A=R2
The parameters p and o can themselves be random variables.

e The goal of parameter estimation is to find 8 given Y

e An estimator is a function from the observation space to the parameter
space .
0:T = A



Which is the Optimal Estimator?

e Assume there is a cost function C
C:AxN=R

such that CJa, 6] is the cost of estimating the true value of 6 as a
e Examples of cost functions for scalar 6

Squared Error Cla, 6] = (a— 0)?

Absolute Error Cla, 0] = |a— 0|

i —0| <
Threshold Error Cla, 0] = { (1) :; IZ_ Z{ N 2



Which is the Optimal Estimator?

Suppose that the parameter 6 is the realization of a random variable ©
With an estimator & we associate a conditional cost or risk conditioned

oné@ . R
ro(8) = Eo {c [e(v), 0] }
The average risk or Bayes risk is given by
R(0) = E {ro(6) }

The optimal estimator is the one which minimizes the Bayes risk
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Which is the Optimal Estimator?
e Given that
ro(8) = Eo {c [é(v),e]} =E {c [é(v), e] ‘e = 0}

the average risk or Bayes risk is given by

~

RO) = E {c [é(v), e] }

= E{E{C [9(\(),@] ‘v}}

JE{cloer.e]|[v=v}pin oy

e The optimal estimate for 8 can be found by minimizing foreach Y =y
the posterior cost

E {c [é(y), e} ’Y - y}
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Minimum-Mean-Squared-Error (MMSE) Estimation

e Consider a scalar parameter 6
e Cla, 0] =(a—0)?
e The posterior cost is given by

v:y} = [ow)]’
-QﬂwE{%Y:y}

Y-y}

e Differentiating posterior cost wrt 4(y), the Bayes estimate is

E {(é(w oy

+E{92

Buwse(y) = E {e]Y -y}
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Example: MMSE Estimation

Suppose X and Y are jointly Gaussian random variables
Let the joint pdf be given by

1 1 Ta—1 )
y)=——-¢€ —=(s— C '(s—
portxy) = 5o (~5s—we s )

2
where s — {x]’ . |:Nx:| and C — { Ox poxzay}
y y poroy  oF

Suppose Y is observed and we want to estimate X
The MMSE estimate of X is

Xmse(y) = E {x‘ Y = y}

The conditional density of X given Y = y is

_ pxv(x,y)
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Example: MMSE Estimation

The conditional density of X given Y = y is a Gaussian density with
mean

(o3
pixly = px + —p(¥ — py)
Oy

and variance
2 2\ 2
x|y = (1= p%)ox

Thus the MMSE estimate of X given Y = y is

Xumse(y) = pix + %P(y — i)
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Maximum A Posteriori (MAP) Estimation

In some situations, the conditional mean may be difficult to compute
An alternative is to use MAP estimation
The MAP estimator is given by

9mﬂw:a@?MPWW)

where p is the conditional density of © given Y.

It can be obtained as the optimal estimator for the threshold cost

function ‘) |
0 ifla—0l<A
qaﬂ—{1 ifla—6] > A

for small A >0
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Maximum A Posteriori (MAP) Estimation

e For the threshold cost function, we have'

E{C [é(y)@] ’Y - y}

-/ ~ cliwy). olp(oly) db

ay)-a
/ p(6ly) do + / Py oo
+A

y)+A
/ p(6ly) do - / p(oly) d

9(y)+A
- —/ p(0ly) do
o(y)—A

e The Bayes estimate is obtained by maximizing the integral in the last
equality

"Assume a scalar parameter 6 for illustration
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Maximum A Posteriori (MAP) Estimation

p(0ly)

d(y)

e The shaded area is the integral |, (f(;y))jj p(6ly) do

e To maximize this integral, the location of A(y) should be chosen to be
the value of 8 which maximizes p(6]y)
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Maximum A Posteriori (MAP) Estimation

p(0ly)

Buar(y)

e This argument is not airtight as p(6|y) may not be symmetric at the
maximum

e But the MAP estimator is widely used as it is easier to compute than the
MMSE estimator
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Maximum Likelihood (ML) Estimation

e The ML estimator is given by
Om.(y) = argmaxp (y|6)
(7]

where p is the conditional density of Y given ©.

e |tis the same as the MAP estimator when the prior probability
distribution of © is uniform

p(6,y) p(y|0) p(0)
ply) O T oly)

Buse(y) = argmax p (6]y) = argmax
] 2]

e |tis also used when the prior distribution is not known
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Example 1: ML Estimation

e Suppose we observe Y;, i =1,2,..., M such that
Yi ~ N(Mv 02)

where Y;’s are independent, . is unknown and o2 is known
e The ML estimate is given by

M
. 1
f(¥) = 7 DoV
i=1
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Example 2: ML Estimation

e Suppose we observe Y;, i =1,2,..., M such that
Yi ~ N(Mv 02)

where Y;’s are independent, both 1 and o2 are unknown
e The ML estimates are given by

1 M
Amc(y) = szf
i=1
1 M
sn(y) = MZ(}’/‘—/AWL(V))2
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Example 3: ML Estimation

e Suppose we observe Y;, i =1,2,..., M such that
Y; ~ Bernoulli(p)

where Y;’s are independent and p is unknown
e The ML estimate of p is given by

1 M
Pu(y) = 4 o
i

21/24



Example 4: ML Estimation

e Suppose we observe Y;, i =1,2,..., M such that
Y; ~ Uniform|0, 6]

where Y’s are independent and 6 is unknown
e The ML estimate of 0 is given by

O (y) = max (yi, Yz, -, Yu—1, Ym)
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Thanks for your attention
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