Performance of ML Receiver for Binary Signaling

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

October 7, 2013

Real AWGN Channel

M-ary Signaling in AWGN Channel

- One of *M* continuous-time signals s₁(t),..., s_M(t) is transmitted
- The received signal is the transmitted signal corrupted by real AWGN
- *M* hypotheses with prior probabilities π_i , i = 1, ..., M

$$\begin{array}{rcl} H_1 & : & y(t) = s_1(t) + n(t) \\ H_2 & : & y(t) = s_2(t) + n(t) \\ \vdots & & \vdots \\ H_M & : & y(t) = s_M(t) + n(t) \end{array}$$

- If the prior probabilities are equal, ML decision rule is optimal
- The ML decision rule is

$$\delta_{ML}(y) = \underset{1 \leq i \leq M}{\operatorname{argmin}} \|y - s_i\|^2 = \underset{1 \leq i \leq M}{\operatorname{argmax}} \langle y, s_i \rangle - \frac{\|s_i\|^2}{2}$$

We want to study the performance of the ML decision rule

ML Decision Rule for Binary Signaling

· Consider the special case of binary signaling

$$\begin{array}{rcl} H_0 & : & y(t) = s_0(t) + n(t) \\ H_1 & : & y(t) = s_1(t) + n(t) \end{array}$$

The ML decision rule decides H₀ is true if

$$\langle \boldsymbol{y}, \boldsymbol{s}_0 \rangle - \frac{\|\boldsymbol{s}_0\|^2}{2} > \langle \boldsymbol{y}, \boldsymbol{s}_1 \rangle - \frac{\|\boldsymbol{s}_1\|^2}{2}$$

• The ML decision rule decides H₁ is true if

$$\langle y, s_0
angle - rac{\|s_0\|^2}{2} \leq \langle y, s_1
angle - rac{\|s_1\|^2}{2}$$

• The ML decision rule

$$\langle y, s_0 - s_1 \rangle \stackrel{H_0}{\underset{H_1}{\geq}} \frac{\|s_0\|^2}{2} - \frac{\|s_1\|^2}{2}$$

 The distribution of ⟨y, s₀ − s₁⟩ is required to evaluate decision rule performance

Performance of ML Decision Rule for Binary Signaling

• Let
$$Z = \langle y, s_0 - s_1 \rangle$$

• Z is a Gaussian random variable

$$Z = \langle y, s_0 - s_1 \rangle = \langle s_i, s_0 - s_1 \rangle + \langle n, s_0 - s_1 \rangle$$

• The mean and variance of Z under H₀ are

$$E[Z|H_0] = ||s_0||^2 - \langle s_0, s_1 \rangle$$

var $[Z|H_0] = \sigma^2 ||s_0 - s_1||^2$

where σ^2 is the PSD of n(t)

• Probability of error under H₀ is

$$P_{e|0} = \Pr\left[Z \le rac{\|s_0\|^2 - \|s_1\|^2}{2} \Big| H_0
ight] = Q\left(rac{\|s_0 - s_1\|}{2\sigma}
ight)$$

Performance of ML Decision Rule for Binary Signaling

• The mean and variance of Z under H₁ are

$$E[Z|H_1] = \langle s_1, s_0 \rangle - ||s_1||^2$$

var[Z|H_1] = $\sigma^2 ||s_0 - s_1||^2$

Probability of error under H₁ is

$$P_{e|1} = \Pr\left[Z > \frac{\|s_0\|^2 - \|s_1\|^2}{2} \middle| H_1\right] = Q\left(\frac{\|s_0 - s_1\|}{2\sigma}\right)$$

• The average probability of error is

$$P_e = \frac{P_{e|0} + P_{e|1}}{2} = Q\left(\frac{\|s_0 - s_1\|}{2\sigma}\right)$$

Different Types of Binary Signaling

- Let $E_b = \frac{1}{2} \left(\|s_0\|^2 + \|s_1\|^2 \right)$
- For antipodal signaling, $s_1(t) = -s_0(t)$ $E_b = ||s_0||^2 = ||s_1||^2$ and $||s_0 - s_1|| = 2||s_0|| = 2||s_1|| = 2\sqrt{E_b}$

$$P_e = Q\left(\frac{\sqrt{E_b}}{\sigma}\right) = Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$$

where $\sigma^2 = \frac{N_0}{2}$

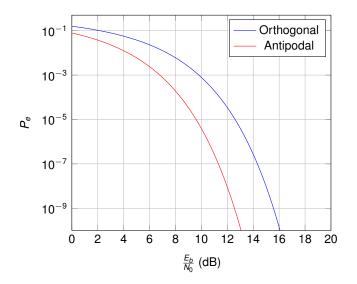
• For on-off keying, $s_1(t) = s(t)$ and $s_0(t) = 0$ and

$$P_e = Q\left(\sqrt{rac{E_b}{N_0}}
ight)$$

• For orthogonal signaling, $s_1(t)$ and $s_2(t)$ are orthogonal ($\langle s_0, s_1 \rangle = 0$)

$$P_e = Q\left(\sqrt{rac{E_b}{N_0}}
ight)$$

Performance Comparison of Antipodal and Orthogonal Signaling



Optimal Choice of Signal Pair

For any s₀(t) and s₁(t), the probability of error of the ML decision rule is

$$P_e = Q\left(\frac{\|\boldsymbol{s}_0 - \boldsymbol{s}_1\|}{2\sigma}\right)$$

- How to chose s₀(t) and s₁(t) to minimize P_e?
- If E_b is not fixed, the problem is ill-defined
- For a given E_b, we have

$$P_{e} = Q\left(\sqrt{\frac{\|s_0 - s_1\|^2}{2N_0}}\right) = Q\left(\sqrt{\frac{E_b(1 - \rho)}{N_0}}\right)$$

where

$$\rho = \frac{\langle \boldsymbol{s}_0, \boldsymbol{s}_1 \rangle}{E_b}, \ -1 \le \rho \le 1$$

- $\rho = -1$ for antipodal signaling, $s_0(t) = -s_1(t)$
- Any pair of antipodal signals is the optimal choice

Complex AWGN Channel

ML Rule for Complex Baseband Binary Signaling

Consider binary signaling in the complex AWGN channel

$$\begin{array}{rcl} H_0 & : & y(t) = s_0(t) + n(t) \\ H_1 & : & y(t) = s_1(t) + n(t) \end{array}$$

where

- y(t) Complex envelope of received signal
- $s_i(t)$ Complex envelope of transmitted signal under H_i
- n(t) Complex white Gaussian noise with PSD $N_0 = 2\sigma^2$
- $n(t) = n_c(t) + jn_s(t)$ where $n_c(t)$ and $n_s(t)$ are independent WGN with PSD σ^2
- The ML decision rule is

$$\begin{array}{ll} \operatorname{\mathsf{Re}}\left(\langle y, s_0 \rangle\right) - \frac{\|s_0\|^2}{2} & \stackrel{H_0}{\underset{H_1}{\geq}} & \operatorname{\mathsf{Re}}\left(\langle y, s_1 \rangle\right) - \frac{\|s_1\|^2}{2} \\ \\ \operatorname{\mathsf{Re}}\left(\langle y, s_0 - s_1 \rangle\right) & \stackrel{H_0}{\underset{H_1}{\geq}} & \frac{\|s_0\|^2 - \|s_1\|^2}{2} \end{array}$$

 The distribution of Re ((y, s₀ - s₁)) is required to evaluate decision rule performance

Performance of ML Rule for Complex Baseband Binary Signaling

- Let $Z = \operatorname{Re}(\langle y, s_0 s_1 \rangle)$
- Z is a Gaussian random variable

$$Z = \operatorname{Re} (\langle y, s_0 - s_1 \rangle) = \langle y_c, s_{0,c} - s_{1,c} \rangle + \langle y_s, s_{0,s} - s_{1,s} \rangle$$

= $\langle s_{i,c} + n_c, s_{0,c} - s_{1,c} \rangle + \langle s_{i,s} + n_s, s_{0,s} - s_{1,s} \rangle$
= $\langle s_{i,c}, s_{0,c} - s_{1,c} \rangle + \langle n_c, s_{0,c} - s_{1,c} \rangle$
+ $\langle s_{i,s}, s_{0,s} - s_{1,s} \rangle + \langle n_s, s_{0,s} - s_{1,s} \rangle$

The mean and variance of Z under H₀ are

$$E[Z|H_0] = ||s_{0,c}||^2 + ||s_{0,s}||^2 - \langle s_{0,c}, s_{1,c} \rangle - \langle s_{0,s}, s_{1,s} \rangle$$

= $||s_0||^2 - \operatorname{Re}(\langle s_0, s_1 \rangle)$
var $[Z|H_0] = \sigma^2 ||s_{0,c} - s_{1,c}||^2 + \sigma^2 ||s_{0,s} - s_{1,s}||^2 = \sigma^2 ||s_0 - s_1||^2$

Probability of error under H₀ is

$$P_{e|0} = \Pr\left[Z \le \frac{\|s_0\|^2 - \|s_1\|^2}{2} \middle| H_0\right] = Q\left(\frac{\|s_0 - s_1\|}{2\sigma}\right)$$

Performance of ML Rule for Complex Baseband Binary Signaling

• The mean and variance of Z under H₁ are

$$\begin{split} & E[Z|H_1] &= \langle s_{1,c}, s_{0,c} \rangle + \langle s_{1,s}, s_{0,s} \rangle - \|s_{1,c}\|^2 - \|s_{1,s}\|^2 \\ &= & \operatorname{Re}\left(\langle s_1, s_0 \rangle\right) - \|s_1\|^2 \\ \operatorname{var}[Z|H_1] &= & \sigma^2 \|s_{0,c} - s_{1,c}\|^2 + \sigma^2 \|s_{0,s} - s_{1,s}\|^2 = \sigma^2 \|s_0 - s_1\|^2 \\ \end{split}$$

Probability of error under H₁ is

$$P_{e|1} = \Pr\left[Z > \frac{\|s_0\|^2 - \|s_1\|^2}{2} \middle| H_1\right] = Q\left(\frac{\|s_0 - s_1\|}{2\sigma}\right)$$

The average probability of error is

$$P_e = \frac{P_{e|0} + P_{e|1}}{2} = Q\left(\frac{\|\boldsymbol{s}_0 - \boldsymbol{s}_1\|}{2\sigma}\right)$$

Thanks for your attention