Random Variables

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

August 8, 2013

Random Variable

Definition

A real-valued function defined on a sample space.

$$
X: \Omega \rightarrow \mathbb{R}
$$

Example (Coin Toss)
$\Omega=$ \{Heads, Tails $\}$
$X=1$ if outcome is Heads and $X=0$ if outcome is Tails.
Example (Rolling Two Dice)
$\Omega=\{(i, j): 1 \leq i, j \leq 6\}, X=i+j$.

Cumulative Distribution Function

Definition

The cdf F of a random variable X is defined for any real number aby

$$
F(a)=P(X \leq a) .
$$

Properties

- $F(a)$ is a nondecreasing function of a
- $F(\infty)=1$
- $F(-\infty)=0$

Discrete Random Variables

Definition

A random variable is called discrete if it takes values only in some countable subset $\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ of \mathbb{R}.

Definition

A discrete random variable X has a probability mass function $f: \mathbb{R} \rightarrow[0,1]$ given by $f(x)=P[X=x]$

Example

- Bernoulli random variable

$$
\Omega=\{0,1\}
$$

$$
f(x)= \begin{cases}p & \text { if } x=1 \\ 1-p & \text { if } x=0\end{cases}
$$

where $0 \leq p \leq 1$

Independent Discrete Random Variables

- Discrete random variables X and Y are independent if the events $\{X=x\}$ and $\{Y=y\}$ are independent for all x and y
- A family of discrete random variables $\left\{X_{i}: i \in I\right\}$ is an independent family if

$$
P\left(\bigcap_{i \in J}\left\{X_{i}=x_{i}\right\}\right)=\prod_{i \in J} P\left(X_{i}=x_{i}\right)
$$

for all sets $\left\{x_{i}: i \in I\right\}$ and for all finite subsets $J \in I$

Example

Binary symmetric channel with crossover probability p

If the input is equally likely to be 0 or 1 , are the input and output independent?

Consequences of Independence

- If X and Y are independent, then the events $\{X \in A\}$ and $\{Y \in B\}$ are independent for any subsets A and B of \mathbb{R}
- If X and Y are independent, then for any functions $g, h: \mathbb{R} \rightarrow \mathbb{R}$ the random variables $g(X)$ and $h(Y)$ are independent
- Let X and Y be discrete random variables with probability mass functions $f_{X}(x)$ and $f_{Y}(y)$ respectively
Let $f_{X, Y}(x, y)=P(\{X=x\} \cap\{Y=y\})$ be the joint probability mass function of X and Y
X and Y are independent if and only if

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y) \quad \text { for all } x, y \in \mathbb{R}
$$

Continuous Random Variable

Definition

A random variable is called continuous if its distribution function can be expressed as

$$
F(x)=\int_{-\infty}^{x} f(u) d u \text { for all } x \in \mathbb{R}
$$

for some integrable function $f: \mathbb{R} \rightarrow[0, \infty)$ called the probability density function of X.

Example (Uniform Random Variable)

A continuous random variable X on the interval $[a, b]$ with cdf

$$
F(x)= \begin{cases}0, & \text { if } x<a \\ \frac{x-a}{b-a}, & \text { if } a \leq x \leq b \\ 1, & \text { if } x>b\end{cases}
$$

The pdf is given by

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & \text { for } a \leq x \leq b \\
0 & \text { otherwise }
\end{array}\right.
$$

Probability Density Function Properties

- $F(a)=\int_{-\infty}^{a} f(x) d x$
- $P(a \leq X \leq b)=\int_{a}^{b} f(x) d x$
- $\int_{-\infty}^{\infty} f(x) d x=1$
- The numerical value $f(x)$ is not a probability. It can be larger than 1 .
- $f(x) d x$ can be intepreted as the probability $P(x<X \leq x+d x)$ since

$$
P(x<X \leq x+d x)=F(x+d x)-F(x) \approx f(x) d x
$$

Independent Continuous Random Variables

- Continuous random variables X and Y are independent if the events $\{X \leq x\}$ and $\{Y \leq y\}$ are independent for all x and y in \mathbb{R}
- If X and Y are independent, then the random variables $g(X)$ and $h(Y)$ are independent
- Let the joint probability distribution function of X and Y be $F(x, y)=P(X \leq x, Y \leq y)$.
Then X and Y are said to be jointly continuous random variables with joint pdf $f_{X, Y}(x, y)$ if

$$
F(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(u, v) d u d v
$$

for all x, y in \mathbb{R}

- X and Y are independent if and only if

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y) \quad \text { for all } x, y \in \mathbb{R}
$$

Expectation

- The expectation of a discrete random variable X with probability mass function f is defined to be

$$
E(X)=\sum_{x: f(x)>0} x f(x)
$$

- The expectation of a continuous random variable with density function f is given by

$$
E(X)=\int_{-\infty}^{\infty} x f(x) d x
$$

- If $a, b \in \mathbb{R}$, then $E(a X+b Y)=a E(X)+b E(Y)$
- If X and Y are independent, $E(X Y)=E(X) E(Y)$
- X and Y are said to be uncorrelated if $E(X Y)=E(X) E(Y)$
- Independent random variables are uncorrelated but uncorrelated random variables need not be independent

Example

Y and Z are independent random variables such that Z is equally likely to be 1 or -1 and Y is equally likely to be 1 or 2 . Let $X=Y Z$.
Then X and Y are uncorrelated but not independent.

Variance

- $\operatorname{var}(X)=E\left[(X-E[X])^{2}\right]=E\left(X^{2}\right)-[E(X)]^{2}$
- For $a \in \mathbb{R}, \operatorname{var}(a X)=a^{2} \operatorname{var}(X)$
- $\operatorname{var}(X+Y)=\operatorname{var}(X)+\operatorname{var}(Y)$ if X and Y are uncorrelated

Complex Random Variable

Definition

A complex random variable $Z=X+j Y$ is a pair of real random variables X and Y.

Remarks

- The cdf of a complex RV is the joint cdf of its real and imaginary parts.
- $E[Z]=E[X]+j E[Y]$
- $\operatorname{var}[Z]=E\left[|Z|^{2}\right]-|E[Z]|^{2}=\operatorname{var}[X]+\operatorname{var}[Y]$

Thanks for your attention

