1. Determine the power spectral density of the following line coding scheme:

$$u(t) = \sum_{n=-\infty}^{\infty} b_n p(t - nT)$$

where $p(t) = I_{[0,T)}(t)$ and the symbol b_n is the obtained by mapping a zero bit to amplitude -A and mapping a one bit to amplitude 2A. Assume that the bits used to generate b_n are independent and equally likely to be zero or one. Simplify your answer such that it does not contain any infinite summations.

- 2. Let $X \sim \mathcal{N}(0, 1)$ and let W be a discrete random variable which is equally likely to be ± 1 . Assume that W is independent of X. Let Y = WX.
 - (a) Show that $Y \sim \mathcal{N}(0, 1)$.
 - (b) Show that X and Y are uncorrelated.
 - (c) Show that X and Y are not independent.
- 3. If $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ are independent Gaussian random variables, show that $X_1 + X_2 \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$. *Hints: What is the pdf of the sum* of independent random variables? It is enough to show that $X_1 + X_2 - \mu_1 - \mu_2 \sim \mathcal{N}(0, \sigma_1^2 + \sigma_2^2)$.
- 4. If $\mathbf{X} \sim \mathcal{N}(\mathbf{m}, \mathbf{C})$ is an $n \times 1$ Gaussian random vector, find the distribution of $\mathbf{A}\mathbf{X} + \mathbf{b}$ where \mathbf{A} is a $n \times n$ matrix and \mathbf{b} is an $n \times 1$ vector.
- 5. Let X be a Gaussian random variable with mean $\mu = -3$ and variance $\sigma^2 = 4$. Express the following probabilities in terms of the Q function with positive arguments.
 - (a) P[X > 5]

(b)
$$P[X < -1]$$

- (c) P[1 < X < 4]
- (d) $P[X^2 + X > 2]$