- 1. Prove that $\mathbf{U} = e^{j\phi} \mathbf{Z}$ is a complex Gaussian vector when \mathbf{Z} is a complex Gaussian vector.
- 2. Consider the following signals.

 $s_1(t) = -3Ap(t), s_2(t) = -Ap(t), s_3(t) = Ap(t), s_4(t) = 3Ap(t)$

where $p(t) = I_{[0,1]}(t)$. If these signals are equally likely to be sent over a real AWGN channel with power spectral density $\frac{N_0}{2}$, derive the following when the optimal receiver is used.

- (a) The power efficiency of this modulation scheme.
- (b) The exact symbol error probability as a function of E_b and N_0
- (c) The union bound on the symbol error probability
- (d) The intelligent union bound on the symbol error probability
- (e) The nearest neighbor approximation of the symbol error probability
- 3. For $M = 2^b$, suppose M orthogonal real signals $s_i(t)$, $i = 1, \ldots, M$ are used for transmitting b bits over a real AWGN channel with PSD $\frac{N_0}{2}$. If all the signals have the same energy E and are equally likely to be transmitted, derive the following as a function of E, N_0 , b or M when the optimal receiver is used.
 - (a) The power efficiency of this modulation scheme
 - (b) The union bound on the symbol error probability
 - (c) The nearest neighbor approximation of the symbol error probability
- 4. Suppose observations Y_i , i = 1, 2, ..., N are Poisson distributed with parameter λ . Assume that the Y_i 's are independent.
 - (a) Derive the ML estimator for λ .
 - (b) Find the mean and variance of the ML estimate.

Recall that a Poisson distributed random variable with parameter λ has a probability mass function given by

$$\Pr(Y = n) = \frac{e^{-\lambda}\lambda^n}{n!}, n = 0, 1, 2, \dots$$

with mean and variance both equal to λ .

5. Suppose observations X_i and Y_i (i = 1, ..., N) depend on an unknown parameter A as per the following distributions.

$$X_i \sim \mathcal{N}(A, \sigma^2), \quad i = 1, 2, \dots, N$$
$$Y_i \sim \mathcal{N}(A, 2\sigma^2), \quad i = 1, 2, \dots, N$$

Note that the variance of Y_i is twice the variance of X_i . Assume that X_i and X_j are independent for $i \neq j$. Assume that Y_i and Y_j are independent for $i \neq j$. Assume that X_i and Y_j are independent for all i, j. Assume σ^2 is known.

(a) the ML estimator for A.

(b) Find the mean and variance of the ML estimate.

6. Suppose we observe a sequence of real values Y_1, Y_2, \ldots, Y_n given by

$$Y_k = \theta s_k + N_k, \quad k = 1, 2, \dots, n$$

where $\mathbf{N} = \begin{bmatrix} N_1 & N_2 & \cdots & N_n \end{bmatrix}^T$ is a zero-mean Gaussian vector with known covariance matrix $\boldsymbol{\Sigma}$ which is a positive definite matrix. The sequence s_1, \ldots, s_n is a known signal sequence and $\boldsymbol{\theta}$ is an unknown parameter.

- (a) Find the ML estimate $\hat{\theta}_{ML}(\mathbf{Y})$ of the parameter θ .
- (b) Find the mean and variance of $\hat{\theta}_{ML}(\mathbf{Y})$.

Recall that the pdf of a real $n \times 1$ Gaussian vector **x** with mean vector **m** and covariance matrix **C** is given by

$$p(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^n \det(\mathbf{C})}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{m})^T \mathbf{C}^{-1}(\mathbf{x} - \mathbf{m})\right)$$