1. (5 points) Let $u_p(t)$ and $v_p(t)$ be passband signals centered at the same carrier frequency f_c . Let $u(t) = u_c(t) + ju_s(t)$ and $v(t) = v_c(t) + jv_s(t)$ be the complex baseband representations of $u_p(t)$ and $v_p(t)$ respectively. Prove that

$$\langle u_p, v_p \rangle = \langle u_c, v_c \rangle + \langle u_s, v_s \rangle = \operatorname{Re}(\langle u, v \rangle).$$

2. (5 points) Consider the three signals given below.

Express the waveform x(t) as a linear combination of $s_i(t)$, i = 1, 2, 3, where

$$x(t) = \begin{cases} -1 & 0 \le t < 1\\ 1 & 1 \le t < 3\\ -1 & 3 \le t < 4. \end{cases}$$

- 3. (5 points) Suppose X(t) and Y(t) are independent wide-sense stationary random processes with mean functions equal to μ_X and μ_Y respectively. Let their autocorrelation functions be $R_X(\tau)$ and $R_Y(\tau)$ respectively.
 - (a) Show that Z(t) = X(t) + Y(t) is a wide-sense stationary random process.
 - (b) Show that W(t) = X(t)Y(t) is a wide-sense stationary random process.