Assignment 1: 20 points

- 1. [5 points] Let $\hat{s}_p(t)$ be the Hilbert transform of a passband signal $s_p(t)$. Show that $\langle s_p, \hat{s}_p \rangle = 0$.
- 2. [5 points] Suppose we define the complex envelope of a passband signal $s_p(t)$ centered at $\pm f_c$ as

$$S(f) = 2S_p(f - f_c)u(-f + f_c)$$

where $S_p(f)$ is the Fourier transform of $s_p(t)$. Derive the following with explanations for each step.

- (a) $s_p(t)$ in terms of s(t)
- (b) $s_p(t)$ in terms of $s_c(t)$ and $s_s(t)$ (the in-phase and quadrature components of s(t))
- (c) s(t) in terms of $s_p(t)$
- (d) $S_p(f)$ in terms of S(f)
- (e) The relationship between $||s||^2$ and $||s_p||^2$.
- 3. [5 points] Consider the passband signals $s_1(t) = \sqrt{2} \cos(2\pi f_1 t)$ and $s_2(t) = \sqrt{2} \cos(2\pi f_2 t)$ where $f_1 \neq f_2$. Calculate the complex baseband representations of these signals for $f_c = f_1$.
- 4. Let a random process be defined as $X(t) = A\cos(2\pi f_c t) + B\sin(2\pi f_c t)$ where f_c is a constant and A and B are independent **real** random variables with mean zero and variance σ^2 . Assume that $E[A^3] \neq 0$ and $E[B^3] \neq 0$.
 - (a) [1 point] Find the mean function of X(t).
 - (b) [1 point] Find the autocorrelation function of X(t).
 - (c) $[1\frac{1}{2} \text{ points}]$ Prove or disprove the wide-sense stationarity of X(t).
 - (d) $[1\frac{1}{2} \text{ points}]$ Prove or disprove the strict-sense stationarity of X(t). Hint: Try calculating $E[X^3(t)]$.