1. [6 points] For the below constellation of 8 symbols, assume that the transmitted symbol is corrupted by adding $N=N_{c}+j N_{s}$ where N_{c} and N_{s} are independent Gaussian random variables with zero mean and variance $\frac{N_{0}}{2}$. All the constellation points are equally likely to be transmitted. Calculate the BER performance of the ML receiver under a Gray mapping in terms of E_{b} and N_{0}.

2. [4 points] Suppose observations $Y_{i}, i=1,2, \ldots, N$ are Rayleigh distributed with parameter σ^{2}. A Rayleigh distributed random variable with parameter $\sigma^{2}>0$ has probability density function given by

$$
p(y)=\frac{y}{\sigma^{2}} e^{-y^{2} / 2 \sigma^{2}} \text { for } y \geq 0
$$

Assume that the Y_{i} 's are independent. Derive the ML estimator for σ^{2}.

