Gaussian Random Variables

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

Gaussian Random Variable

Definition

A continuous random variable with pdf of the form

$$
p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right), \quad-\infty<x<\infty
$$

where μ is the mean and σ^{2} is the variance.

Notation

- $\mathcal{N}\left(\mu, \sigma^{2}\right)$ denotes a Gaussian distribution with mean μ and variance σ^{2}
- $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \Rightarrow X$ is a Gaussian RV with mean μ and variance σ^{2}
- If $X \sim \mathcal{N}(0,1)$, then X is a standard Gaussian RV

Affine Transformations Preserve Gaussianity

Theorem
If X is Gaussian, then $a X+b$ is Gaussian for $a, b \in \mathbb{R}$.
Remarks

- If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $a X+b \sim \mathcal{N}\left(a \mu+b, a^{2} \sigma^{2}\right)$.
- If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ and $\sigma \neq 0$, then $\frac{X-\mu}{\sigma} \sim \mathcal{N}(0,1)$.

CDF and CCDF of Standard Gaussian

- Cumulative distribution function of $X \sim \mathcal{N}(0,1)$

$$
\Phi(x)=P[X \leq x]=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} \exp \left(\frac{-t^{2}}{2}\right) d t
$$

- Complementary cumulative distribution function of $X \sim \mathcal{N}(0,1)$

$$
Q(x)=P[X>x]=\int_{x}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(\frac{-t^{2}}{2}\right) d t
$$

Properties of $Q(x)$

- $\Phi(x)+Q(x)=1$
- $Q(-x)=\Phi(x)=1-Q(x)$
- $Q(0)=\frac{1}{2}$
- $Q(\infty)=0$
- $Q(-\infty)=1$
- $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$

$$
\begin{aligned}
& P[X>\alpha]=Q\left(\frac{\alpha-\mu}{\sigma}\right) \\
& P[X \leq \alpha]=Q\left(\frac{\mu-\alpha}{\sigma}\right)
\end{aligned}
$$

Jointly Gaussian Random Variables

Jointly Gaussian Random Variables

Definition (Jointly Gaussian RVs)

Random variables $X_{1}, X_{2}, \ldots, X_{n}$ are jointly Gaussian if any linear combination is a Gaussian random variable.

$$
a_{1} X_{1}+\cdots+a_{n} X_{n} \text { is Gaussian for all }\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}
$$

Example (Not Jointly Gaussian) $X \sim \mathcal{N}(0,1)$

$$
Y=\left\{\begin{array}{rr}
X, & \text { if }|X|>1 \\
-X, & \text { if }|X| \leq 1
\end{array}\right.
$$

$Y \sim \mathcal{N}(0,1)$ and $X+Y$ is not Gaussian.

Covariance

- For real random variables X and Y, the covariance is defined as

$$
\operatorname{cov}(X, Y)=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]
$$

where $\mu_{X}=E[X]$ and $\mu_{Y}=E[Y]$

- Properties
- $\operatorname{var}(X)=\operatorname{cov}(X, X)$
- If X and Y are independent, then $\operatorname{cov}(X, Y)=0$
- If $\operatorname{cov}(X, Y)=0$, then they are said to be uncorrelated
- $\operatorname{cov}(X+a, Y+b)=\operatorname{cov}(X, Y)$ for any $a, b \in \mathbb{R}$
- Covariance is a bilinear function

$$
\begin{aligned}
\operatorname{cov}\left(a_{1} X_{1}+a_{2} X_{2}, a_{3} X_{3}+a_{4} X_{4}\right)= & a_{1} a_{3} \operatorname{cov}\left(X_{1}, X_{3}\right) \\
& +a_{1} a_{4} \operatorname{cov}\left(X_{1}, X_{4}\right) \\
& +a_{2} a_{3} \operatorname{cov}\left(X_{2}, X_{3}\right) \\
& +a_{2} a_{4} \operatorname{cov}\left(X_{2}, X_{4}\right)
\end{aligned}
$$

- Correlation coefficient of X and Y is defined as

$$
\rho(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X) \operatorname{var}(Y)}}
$$

- $|\rho(X, Y)| \leq 1$ with equality $\Longleftrightarrow \operatorname{Pr}[Y=a X+b]=1$ for some constants a, b

Mean Vector and Covariance Matrix

- Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)^{T}$ be a $n \times 1$ random vector
- The mean vector of \mathbf{X} is given by $\mathbf{m}_{X}=E[\mathbf{X}]=\left(E\left[X_{1}\right], \ldots, E\left[X_{n}\right]\right)^{T}$
- The covariance matrix \mathbf{C}_{X} of \mathbf{X} is an $n \times n$ matrix with (i, j) th entry given by

$$
\begin{aligned}
\mathbf{C}_{X}(i, j) & =E\left[\left(X_{i}-E\left[X_{i}\right]\right)\left(X_{j}-E\left[X_{j}\right]\right)\right] \\
& =E\left[X_{i} X_{j}\right]-E\left[X_{i}\right] E\left[X_{j}\right]
\end{aligned}
$$

- A compact notation for \mathbf{C}_{X} is

$$
\mathbf{C}_{X}=E\left[(\mathbf{X}-E[\mathbf{X}])(\mathbf{X}-E[\mathbf{X}])^{T}\right]=E\left[\mathbf{X} \mathbf{X}^{T}\right]-E[\mathbf{X}](E[\mathbf{X}])^{T}
$$

- If $\mathbf{Y}=\mathbf{A X}+\mathbf{b}$ where \mathbf{A} is $m \times n$ constant matrix and \mathbf{b} is an $m \times 1$ constant vector, then

$$
\begin{aligned}
\mathbf{m}_{Y} & =\mathbf{A} \mathbf{m}_{X}+\mathbf{b} \\
\mathbf{C}_{Y} & =\mathbf{A C}_{X} \mathbf{A}^{T}
\end{aligned}
$$

Gaussian Random Vector

Definition (Gaussian Random Vector)

A random vector $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)^{T}$ whose components are jointly Gaussian.
Notation
$\mathbf{X} \sim \mathcal{N}(\mathbf{m}, \mathbf{C})$ where

$$
\mathbf{m}=E[\mathbf{X}], \quad \mathbf{C}=E\left[(\mathbf{X}-\mathbf{m})(\mathbf{X}-\mathbf{m})^{T}\right]
$$

Definition (Joint Gaussian Density)
If \mathbf{C} is invertible, the joint density is given by

$$
p(\mathbf{x})=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(\mathbf{C})}} \exp \left(-\frac{1}{2}(\mathbf{x}-\mathbf{m})^{T} \mathbf{C}^{-1}(\mathbf{x}-\mathbf{m})\right)
$$

Example (\mathbf{C} is not invertible)
$\mathbf{X}=\left(X_{1}, X_{2}\right)^{T}$ where $X_{1} \sim \mathcal{N}(0,1)$ and $X_{2}=2 X_{1}+3$

Affine Transformations Preserve Joint Gaussianity

- If \mathbf{X} is a Gaussian vector, then $\mathbf{Y}=\mathbf{A X}+\mathbf{b}$ is also a Gaussian vector
- Here \mathbf{X} is an $n \times 1$ vector, \mathbf{A} is an $m \times n$ constant matrix, and \mathbf{b} is an $m \times 1$ constant vector
- Any linear combination of Y_{1}, \ldots, Y_{m} is a constant plus a linear combination of X_{1}, \ldots, X_{n}, which is a Gaussian random variable
- Since \mathbf{Y} is a Gaussian random vector, its distribution is completely characterized by its mean vector and covariance matrix

$$
\mathbf{X} \sim \mathcal{N}(\mathbf{m}, \mathbf{C}) \Longrightarrow \mathbf{Y} \sim \mathcal{N}\left(\mathbf{A m}+\mathbf{b}, \mathbf{A}^{\top} \mathbf{C A}\right)
$$

Uncorrelated Random Variables and Independence

- Recall that X_{1} and X_{2} are said to be uncorrelated if $\operatorname{cov}\left(X_{1}, X_{2}\right)=0$
- If X_{1} and X_{2} are independent,

$$
\operatorname{cov}\left(X_{1}, X_{2}\right)=0
$$

- If X_{1}, \ldots, X_{n} are jointly Gaussian and pairwise uncorrelated, then they are independent. Consider the case when $\operatorname{var}\left(X_{i}\right) \neq 0$ for each i.

$$
\begin{aligned}
p(\mathbf{x}) & =\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(\mathbf{C})}} \exp \left(-\frac{1}{2}(\mathbf{x}-\mathbf{m})^{\top} \mathbf{C}^{-1}(\mathbf{x}-\mathbf{m})\right) \\
& =\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \sigma_{i}^{2}}} \exp \left(-\frac{\left(x_{i}-m_{i}\right)^{2}}{2 \sigma_{i}^{2}}\right)
\end{aligned}
$$

where $m_{i}=E\left[X_{i}\right]$ and $\sigma_{i}^{2}=\operatorname{var}\left(X_{i}\right)$.

Uncorrelated Gaussian RVs may not be Independent

Example

- $X \sim \mathcal{N}(0,1)$
- W is equally likely to be +1 or -1
- W is independent of X
- $Y=W X$
- $Y \sim \mathcal{N}(0,1)$
- X and Y are uncorrelated
- X and Y are not independent

References

- Section 3.1, Fundamentals of Digital Communication, Upamanyu Madhow, 2008

