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Additive White Gaussian Noise Channel

AWGN

—_—
s(1) Channel

—> y(1)

y(t) = s(t) + n(1)

s(t) Transmitted Signal
y(t) Received Signal
n(t) White Gaussian Noise

Su(f) = " = o

Rn(7) = 625(7)



M-ary Signaling in AWGN Channel

One of M continuous-time signals si (1), ..., su(t) is sent
The received signal is the transmitted signal corrupted by AWGN
M hypotheses with prior probabilities 7, i=1,..., M

Hi o y(t) = si(t) + n(t)
He = y(t) = sao(t) + (1)

Hu o y(t) = s(t) + n(t)

The model implicitly assumes that

e the delay has been estimated and
e there is no attenuation or other distortion.

Random variables are easier to handle than random processes

We derive an equivalent M-ary hypothesis testing problem involving
only random vectors

Two digressions follow

e Gaussian random processes
e Signal space representation
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Gaussian Random Processes



Gaussian Random Process

Definition
A random process X(t) is Gaussian if its samples X(t1), ..., X(t,) are jointly
Gaussian for any n € N and distinct sample locations t, bz, . . ., th.
LetX = [X(t;) --- X(t)] " be the vector of samples. The joint density is
given by
) = s oxp (—x-m) T (x—m) )
(2m)ndet(C) 2
where
m=E[X], C=E [(x —m)(X — m)T]
Properties

e The mean and autocorrelation functions completely characterize a
Gaussian random process.

e Wide-sense stationary Gaussian processes are strictly stationary.



White Gaussian Noise

Definition
A zero mean WSS Gaussian random process with power spectral density
N,
Sn(f) = ?"

™ is termed the two-sided PSD and has units Watts per Hertz.

Remarks

e Autocorrelation function Ra(7) = %24(7)

e Infinite Power! Ideal model of Gaussian noise occupying more
bandwidth than the signals of interest.



White Gaussian Noise through Correlators

e Consider the output of a correlator with WGN input

z= /Oo n(t)u(t) dt = (n, )

where u(t) is a deterministic finite-energy real signal
e Zis a Gaussian random variable
e The mean of Z is

E[7] = [ T E (0] u(t) dt =

e The variance of Z is

var(Z)

E[((n,u))}—EU

/.
/.

No

2

n(t)u(t) dt / n(s)u(s) ds

/ $)E[n(t)n(s)] dt ds
/ —6t—s)dtds
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White Gaussian Noise through Correlators

Proposition
Let ui(t) and ux(t) be finite-energy real signals and let n(t) be WGN with
PSD S,(f) = % Then (n, uy) and (n, u.) are jointly Gaussian with

covariance
No

5 (ur, Up).

cov ({n, us), (N, Uz)) =

Proof
To prove that (n, us) and (n, ux) are jointly Gaussian, consider a linear
combination a(n, uy) + b({n, u2)

aln, uy) + b{n, ) = / = n() [aus (8) + bus(D)] at.

This is the result of passing n(t) through a correlator. So it is a Gaussian
random variable.



White Gaussian Noise through Correlators

Proof (continued)

COV(<I7, U1>, <n7 U2>) = E[<n’ U1><n’ U2>]

© (1) dt / = n(s)us(s) ds}

—o0

E
_ / ” / " U (Hw(s)E [n(t)n(s)] ot ds

If ui(t) and wx(t) are orthogonal, (n, uy) and {(n, u») are independent.



Signal Space Representation



Signal Space Representation of Waveforms

e Given M finite energy waveforms, construct an orthonormal basis

31(1), ey SM(t) — ¢1(f), .. .,qu(t)
—_—

Orthonormal basis

- ) § i
(#i, &) = [ ¢i(t)o; (1) dt:{ 0 :)t,her\{vise

e Each si(t) is a linear combination of the basis vectors
N

sty = siapn(t), i=1,....M
n=1

o 5(t) is represented by the vector s; = [si1 -~ sin]’

e Theset {s;: 1 < i< M} is called the signal space representation or
constellation
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Constellation Point to Waveform

#1(1)

Sj([)
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Waveform to Constellation Point

#i(1)
>é N > Sia
é3(t)

S,‘(f)—
dn-1(1)
)é > [ > SiN-1
o (t)
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Gram-Schmidt Orthogonalization Procedure

e Algorithm for calculating orthonormal basis for s¢(t), ..., su(t)
e Consider M =1
$1(t) = si()
[s1l
where ||s1||> = (s1, 51)
e Consider M =2
si(t) (1)
t , )=~~~
A =TYsq #0=1
where (1) = s2(t) — (Sz, $1) 1 (1)
e Consider M =3
si(1) 7 (t) Y2(t)
t) = , R t) =
PO =Yg 2O= 00 20 =

where

7(t) = s2(t) — (S2, P1) 91 (1)
Y2(t) = sa(t) — (83, 01)01(t) — (83, P2)a(1)
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Gram-Schmidt Orthogonalization Procedure

e In general, given s1(t), ..., su(t) the kth basis function is
k(1)
ok(f) =
= T
where

k—1
1) = si(t) = > _(sk, i) oi(t)
i=1

is not the zero function

o [f (1) is zero, sk(t) is a linear combination of ¢1(t), ..., ¢k—1(t). It does
not contribute to the basis.
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Gram-Schmidt Procedure Example

(1) s3(t)
1 1
3 t
2 t
e
(1) sa(t)
1 1
2 t 3 t
1 e
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Gram-Schmidt Procedure Example

@1(t)

a(t)

s V2 0 o]
s2 0 v2 o
S5 vz o 1]
S4 -v2 o 1"
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Properties of Signal Space Representation

e Energy
N

En = / Sm(OF dt = > [smal? = IS

n=1

e Inner product
(si(t), si(t)) = (si,s))
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Optimal Receiver for the AWGN Channel



Restriction to Signal Space is Optimal

Theorem
For the M-ary hypothesis testing given by

Hi o y(t) = si(t) + n(t)

Ha = y(t) = su(t) + n(1)

there is no loss in detection performance by using the optimal decision rule
for the following M-ary hypothesis testing problem

Hi : Y=s;+N

Hy : Y=sy+N

where Y, s; and N are the projections of y(t), si(t) and n(t) respectively onto
the signal space spanned by {s;i(t)}.
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Projection of Signals onto Signal Space

e Consider an orthonormal basis {v(t) | i = 1,..., K} for the space
spanned by {si(t) | i=1,...,M}
e Projection of s;(t) onto the signal space is

-
si=[(s, 1) - (si,9k)]
Ui(t)
;é /] 3> si1
ba(t)
é /] > sie
Si(t) m— =8;
pr-1(t)
é /] P Sivci
Yk(t)
6 3 /] > six
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Projection of Observed Signal onto Signal Space

e Projection of y(t) onto the signal space is

Y=[y, 1) - ()]

i
]

G
]
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Projection of Noise onto Signal Space

e Projection of n(t) onto the signal space is

N=[(n) - (nex)]”

Pi(t)

X ]

(1) m— =N
Pr—1(t)
)é )@ > Nic—1
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Proof of Theorem

Y=[en) o ]
e Component of y(t) orthogonal to the signal space is
K

yr(t) =y(t) = (v, dii(t)

i=1

y(t) is equivalent to (Y, y= (1))
We claim that y(¢) is an irrelevant statistic

yL(t) = Z%% 1/’/
j=1
K
= Z Si + 0, ) Y(t)
j=1

(N, yyy(t) = n* (1)

Mx

= n(t)—

-
I

where n*(t) is the component of n(t) orthogonal to the signal space.

e n*(t) does not depend on which s;(t) was transmitted and is
independent of N, which makes y*(t) an irrelevant statistic.
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M-ary Signaling in AWGN Channel

e M hypotheses with prior probabilities i, i=1,...,M
H, : Y=s1+N

Hy : Y=sy+N

Y = () o k)]
si = [(snen) - (shuK)]”
N = [(ny) - (nu)]

e N~ N(m,C)where m =0and C = ¢l
cov ((n, 1), (n,1h2)) = 0% (W1, 1))
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Optimal Receiver for the AWGN Channel

Theorem (MPE Decision Rule)
The MPE decision rule for M-ary signaling in AWGN channel is given by

oupe(y) = argmin|ly — si||? — 26° log
1<i<M
12
= argmax(y,s;) — @ + o?log m;
1<i<M
Proof
ompe(y) = argmaxmip;(y)

1<i<M

argmax 7; exp (—u)

1<i<M 202
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MPE Decision Rule
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Continuous-Time Version of MPE Rule

e Discrete-time version

2
s.

ompe(y) = argmax(y,s;) — % +02 log ;i

1<i<M

e Continuous-time version

_ 1 _
ompe(y) = argmax(y,si) 5 + o° log

1<i<M
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MPE Decision Rule Example

si(t) s2(t) Ss(t)

Let7T1 =Ty = =
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ML Receiver for the AWGN Channel

Theorem (ML Decision Rule)
The ML decision rule for M-ary signaling in AWGN channel is given by

om(y) = argminlly —s;|?
1<i<M
112
- argmax(y,s;)——”s'H
1<i<M 2
Proof
om(y) = argmaxpi(y)
1<i<M

2
argmax exp (—7”" — s )

1<i<M 202
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ML Decision Rule
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ML Decision Rule
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Continuous-Time Version of ML Rule

e Discrete-time version

2

s.
sw(y) = argmax(y,s;) — I 2/H
1<i<M
e Continuous-time version
2
s
om(y) = argmax{y,s;) — I éH
1<i<M
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ML Decision Rule for Antipodal Signaling

si(f) sa(t)

= argmax(y, s;)
1<i<2

m(y) = argmax(y, s;) —

|Isill®
1<i<2 2

m(y)=1 < (y,81) 2 (¥, 8) < (¥,81)>0

)
(. s1) = / y(7)s1(r) dr = (v * sue)(T)

where sye(t) = s1(T — t) is the matched filter.
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