1. [5 points] Let $\phi_1(t), \phi_2(t), \phi_3(t)$ be real unit energy signals which are orthogonal, i.e. $\|\phi_1\|^2 = \|\phi_2\|^2 = \|\phi_3\|^2 = 1$ and $\langle \phi_1, \phi_2 \rangle = \langle \phi_2, \phi_3 \rangle = \langle \phi_3, \phi_1 \rangle = 0$.

Determine an orthonormal basis for the set of signals $s_1(t), s_2(t), s_3(t)$ which are given by the following equations where $j = \sqrt{-1}$.

$$s_1(t) = 2\phi_2(t) - 3\phi_3(t) + 2j\phi_1(t),$$

$$s_2(t) = \phi_2(t),$$

$$s_3(t) = 2\phi_1(t) + 3j\phi_3(t).$$

2. [5 points] Let $\phi_1(t)$ and $\phi_2(t)$ be real unit energy signals which are orthogonal, i.e. $\|\phi_1\|^2 = \|\phi_2\|^2 = 1$ and $\langle \phi_1, \phi_2 \rangle = 0$. Let $\psi_1(t)$ and $\psi_2(t)$ be given by

$$\psi_1(t) = \phi_1(t) + \phi_2(t), \psi_2(t) = \phi_1(t) - \phi_2(t).$$

Consider the following hypothesis testing problem in AWGN where the hypotheses are equally likely, $s_1(t) = 3\psi_1(t) + 2\psi_2(t)$, and $s_2(t) = \psi_1(t) + 3\psi_2(t)$.

$$H_1$$
 : $y(t) = s_1(t) + n(t)$
 H_2 : $y(t) = s_2(t) + n(t)$

Let the observed signal be given by $y(t) = \psi_1(t) + 2\psi_2(t)$. Find the output of the optimal decision rule. You have to show the calculations which lead to your answer.

3. [10 points] Let $\psi_1(t), \psi_2(t)$ be a complex orthonormal basis. Let $n(t) = n_c(t) + jn_s(t)$ be complex white Gaussian noise with PSD $2\sigma^2$. Then $n_c(t)$ and $n_s(t)$ are independent real WGN processes with PSD σ^2 . Consider the projection of n(t) onto the orthonormal basis given by

$$\mathbf{N} = \begin{bmatrix} \langle n, \psi_1 \rangle \\ \langle n, \psi_2 \rangle \end{bmatrix} = \begin{bmatrix} N_{1,c} + j N_{1,s} \\ N_{2,c} + j N_{2,s} \end{bmatrix}.$$

- (a) Show that $N_{1,c}$ and $N_{2,c}$ are independent random variables.
- (b) Show that $N_{1,c}$ and $N_{2,s}$ are independent random variables.