1. [5 points] Let $p(t)$ be a signal which is nonzero in the interval $[0, T]$ with Fourier transform $P(f)$. Suppose $u(t)$ is a polar NRZ signal given by

$$
u(t)=\sum_{n=-\infty}^{\infty} b_{n} p(t-n T)
$$

where the symbols b_{n} are independent and identically distributed with probability mass function $\operatorname{Pr}\left[b_{n}=A\right]=\operatorname{Pr}\left[b_{n}=-A\right]=\frac{1}{2}$ for some real value $A>0$.
Suppose $v(t)=u(t)+u(t-T)$. Derive the power spectral density of $v(t)$. Simplify your answer such that it does not contain any infinite summations. Hint: The formula for the power spectral density of of a line code signal $u(t)$ is given by

$$
S_{u}(f)=\frac{|P(f)|^{2}}{T} \sum_{k=-\infty}^{\infty} R_{b}[k] e^{-j 2 \pi k f T} .
$$

2. [5 points] Suppose the input to the following binary channel is equally likely to be 0 or 1 . Based on the output of the channel, we would like to make a decision about the input bit.

Assuming $0 \leq p<\frac{1}{3}$, derive the following:
(a) The optimal decision rule which minimizes the probability of decision error.
(b) The minimum probability of decision error of the optimal decision rule as a function of p.
3. [5 points] Consider the following ternary hypothesis testing problem where the hypotheses are equally likely.

$$
\begin{aligned}
& H_{1}: \quad Y \sim U[-1,1], \\
& H_{2}: \\
& H_{3}: Y \sim U[-2,2], \\
& :
\end{aligned} \text {, } \sim U[-3,3],
$$

where $U[a, b]$ denotes the uniform distribution between real numbers a and b.
(a) Derive the optimal decision rule.
(b) Find the decision error probability of the optimal decision rule.
4. [5 points] Suppose $X_{1}, X_{2}, X_{3}, X_{4}$ are jointly Gaussian random variables. We are also given that $X_{1}, X_{2}, X_{3}, X_{4}$ are independent random variables.
All four random variables have variance $\sigma^{2}>0 . X_{1}$ and X_{2} have mean $\mu>0$ while X_{3} and X_{4} have mean 2μ.
Consider the following binary hypothesis testing problem where the hypotheses are equally likely.

$$
\begin{aligned}
& H_{1}: \quad \mathbf{Y}=\left[\begin{array}{c}
X_{1} \\
X_{2}+X_{3} \\
X_{4}
\end{array}\right], \\
& H_{2}: \quad \mathbf{Y}=\left[\begin{array}{c}
X_{3} \\
X_{1}+X_{4} \\
X_{2}
\end{array}\right] .
\end{aligned}
$$

(a) Derive the optimal decision rule. Show your steps and simplify the rule as much as possible.
(b) Find the decision error probability of the optimal decision rule.

