EE 703: Digital Message Transmission (Autumn 2022)

Instructor: Saravanan Vijayakumaran Indian Institute of Technology Bombay

Assignment 3: 20 points

Date: August 22, 2022

- 1. Let a random process be defined as $X(t) = A\cos(2\pi f_c t) + B\sin(2\pi f_c t)$ where f_c is a constant and A and B are independent **real** random variables with mean zero and variance σ^2 . Assume that $E[A^3] \neq 0$ and $E[B^3] \neq 0$.
 - (a) [2 points] Find the mean function of X(t).
 - (b) [2 points] Find the autocorrelation function of X(t).
 - (c) [3 points] Prove or disprove the wide-sense stationarity of X(t).
 - (d) [3 points] Prove or disprove the strict-sense stationarity of X(t). Hint: Try calculating $E[X^3(t)]$.
- 2. Consider

$$u(t) = \sum_{n=-\infty}^{\infty} b_n p(t - nT)$$

where $p(t) = I_{[0,T)}(t)$. Recall that $I_A(t)$ is the indicator function of the set A.

- (a) [5 points] Prove that u(t) is a cyclostationary random process with respect to period T if $\{b_n\}$ is a discrete-time stationary random process.
- (b) [5 points] Prove that u(t) is a wide-sense cyclostationary random process with respect to period T if $\{b_n\}$ is a discrete-time wide-sense stationary random process.