Assignment 4: 20 points

- 1. [5 points] Let $\phi_1(t), \phi_2(t), \ldots, \phi_N(t)$ be non-zero signals which are pairwise orthogonal, i.e. $\langle \phi_i, \phi_j \rangle = 0$ for $i \neq j$. Show that $\phi_1(t), \phi_2(t), \ldots, \phi_N(t)$ are linearly independent.
- 2. [5 points] Let φ₁(t), φ₂(t), φ₃(t) be real unit energy signals which are orthogonal, i.e. ||φ₁||² = ||φ₂||² = ||φ₃||² = 1 and ⟨φ₁, φ₂⟩ = ⟨φ₂, φ₃⟩ = ⟨φ₃, φ₁⟩ = 0.
 Determine on orthogonal basis for the set of signals of (t), a (t) which are given

Determine an orthonormal basis for the set of signals $s_1(t), s_2(t), s_3(t)$ which are given by the following equations where $j = \sqrt{-1}$.

$$s_1(t) = \phi_1(t) - \phi_2(t) + j [\phi_1(t) + \phi_2(t)],$$

$$s_2(t) = \phi_1(t) + j [\phi_2(t) - \phi_3(t)]$$

$$s_3(t) = 2\phi_3(t).$$

3. [10 points] Let $\phi_1(t), \phi_2(t), \phi_3(t)$, and $\phi_4(t)$ be real unit energy signals which are pairwise orthogonal, i.e. $\|\phi_1\|^2 = \|\phi_2\|^2 = \|\phi_3\|^2 = \|\phi_4\|^2 = 1$ and $\langle \phi_i, \phi_j \rangle = 0$ for $i \neq j$. Let $\psi_1(t)$ to $\psi_3(t)$ be given by

$$\psi_1(t) = \phi_1(t) + \phi_2(t) + \phi_3(t) + \phi_4(t),$$

$$\psi_2(t) = \phi_1(t) + \phi_2(t) - \phi_3(t) - \phi_4(t),$$

$$\psi_3(t) = \phi_1(t) - \phi_2(t) + \phi_3(t) - \phi_4(t).$$

Consider the following hypothesis testing problem in AWGN where the hypotheses are equally likely.

$$\begin{array}{rcl} H_1 & : & y(t) = \psi_1(t) + n(t) \\ H_2 & : & y(t) = \psi_2(t) + n(t) \\ H_3 & : & y(t) = \psi_3(t) + n(t) \end{array}$$

Let the observed signal be given by $y(t) = 2\psi_1(t) + \psi_2(t)$. Find the output of the optimal decision rule. You have to show the calculations which lead to your answer.