EE 703: Digital Message Transmission (Autumn 2022)
 Instructor: Saravanan Vijayakumaran
 Indian Institute of Technology Bombay

1. [5 points] Let $\phi_{1}(t), \phi_{2}(t), \ldots, \phi_{N}(t)$ be non-zero signals which are pairwise orthogonal, i.e. $\left\langle\phi_{i}, \phi_{j}\right\rangle=0$ for $i \neq j$. Show that $\phi_{1}(t), \phi_{2}(t), \ldots, \phi_{N}(t)$ are linearly independent.
2. [5 points] Let $\phi_{1}(t), \phi_{2}(t), \phi_{3}(t)$ be real unit energy signals which are orthogonal, i.e. $\left\|\phi_{1}\right\|^{2}=\left\|\phi_{2}\right\|^{2}=\left\|\phi_{3}\right\|^{2}=1$ and $\left\langle\phi_{1}, \phi_{2}\right\rangle=\left\langle\phi_{2}, \phi_{3}\right\rangle=\left\langle\phi_{3}, \phi_{1}\right\rangle=0$.

Determine an orthonormal basis for the set of signals $s_{1}(t), s_{2}(t), s_{3}(t)$ which are given by the following equations where $j=\sqrt{-1}$.

$$
\begin{aligned}
& s_{1}(t)=\phi_{1}(t)-\phi_{2}(t)+j\left[\phi_{1}(t)+\phi_{2}(t)\right], \\
& s_{2}(t)=\phi_{1}(t)+j\left[\phi_{2}(t)-\phi_{3}(t)\right] \\
& s_{3}(t)=2 \phi_{3}(t) .
\end{aligned}
$$

3. [10 points] Let $\phi_{1}(t), \phi_{2}(t), \phi_{3}(t)$, and $\phi_{4}(t)$ be real unit energy signals which are pairwise orthogonal, i.e. $\left\|\phi_{1}\right\|^{2}=\left\|\phi_{2}\right\|^{2}=\left\|\phi_{3}\right\|^{2}=\left\|\phi_{4}\right\|^{2}=1$ and $\left\langle\phi_{i}, \phi_{j}\right\rangle=0$ for $i \neq j$. Let $\psi_{1}(t)$ to $\psi_{3}(t)$ be given by

$$
\begin{aligned}
& \psi_{1}(t)=\phi_{1}(t)+\phi_{2}(t)+\phi_{3}(t)+\phi_{4}(t), \\
& \psi_{2}(t)=\phi_{1}(t)+\phi_{2}(t)-\phi_{3}(t)-\phi_{4}(t), \\
& \psi_{3}(t)=\phi_{1}(t)-\phi_{2}(t)+\phi_{3}(t)-\phi_{4}(t) .
\end{aligned}
$$

Consider the following hypothesis testing problem in AWGN where the hypotheses are equally likely.

$$
\begin{aligned}
H_{1} & : y(t)=\psi_{1}(t)+n(t) \\
H_{2} & : y(t)=\psi_{2}(t)+n(t) \\
H_{3} & :
\end{aligned} \quad y(t)=\psi_{3}(t)+n(t)
$$

Let the observed signal be given by $y(t)=2 \psi_{1}(t)+\psi_{2}(t)$. Find the output of the optimal decision rule. You have to show the calculations which lead to your answer.

