Quiz 1: 10 points

1. Consider

$$s(t) = \sum_{n = -\infty}^{\infty} a_n p(t - nT)$$

where $p(t) = I_{[0,T]}(t)$. Recall that $I_A(t)$ is the indicator function of the set A.

- (a) $[2\frac{1}{2} \text{ points}]$ Prove that s(t) is a cyclostationary random process with respect to period T if $\{a_n\}$ is a discrete-time stationary random process.
- (b) $[2\frac{1}{2} \text{ points}]$ Prove that s(t) is a wide-sense cyclostationary random process with respect to period T if $\{a_n\}$ is a discrete-time wide-sense stationary random process.
- 2. [5 points] The constellation $s_1 = -A, s_2 = A, s_3 = 3A$ is corrupted by noise $N \sim \mathcal{N}(1, \sigma^2)$. Note that the noise N has mean 1. Assume all three constellation points are equally likely to be transmitted.

- (a) Find the optimal decision rule based on the observation Y. Show your steps.
- (b) Find the average probability of decision error for the optimal decision rule. Express your final answer in terms of the Q function. Show your steps.