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Digital Modulation



Digital Modulation

Definition
The process of mapping a bit sequence to signals for transmission over a
channel.
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Digital Modulation

Example (Binary Baseband PAM)
1→ p(t) and 0→ −p(t)
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Classification of Modulation Schemes
• Memoryless

• Divide bit sequence into k -bit blocks
• Map each block to a signal sm(t), 1 ≤ m ≤ 2k

• Mapping depends only on current k -bit block

• Having Memory
• Mapping depends on current k -bit block and L− 1 previous blocks
• L is called the constraint length

• Linear
• Complex baseband representation of transmitted signal has the

form
u(t) =

∑
n

bng(t − nT )

where bn’s are the transmitted symbols and g is a fixed baseband
waveform

• Nonlinear
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PSD Definition for Linearly Modulated Signals



PSD Definition for Linearly Modulated Signals
• Consider a real binary PAM signal

u(t) =
∞∑

n=−∞
bng(t − nT )

where bn = ±1 with equal probability and g(t) is a
baseband pulse of duration T

• PSD = F [Ru(τ)] Neither SSS nor WSS
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Cyclostationary Random Process

Definition (Cyclostationary RP)
A random process X (t) is cyclostationary with respect to time
interval T if it is statistically indistinguishable from X (t − kT ) for
any integer k .

Definition (Wide Sense Cyclostationary RP)
A random process X (t) is wide sense cyclostationary with
respect to time interval T if the mean and autocorrelation
functions satisfy

mX (t) = mX (t − T ) for all t ,
RX (t1, t2) = RX (t1 − T , t2 − T ) for all t1, t2.
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Power Spectral Density of a Cyclostationary Process
To obtain the PSD of a cyclostationary process with period T
• Calculate autocorrelation of cyclostationary process

RX (t , t − τ)

• Average autocorrelation between 0 and T ,
RX (τ) = 1

T

∫ T
0 RX (t , t − τ) dt

• Calculate Fourier transform of averaged autocorrelation
RX (τ)
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Power Spectral Density of a Realization
Time windowed realizations have finite energy

xTo (t) = x(t)I
[− To

2 , To
2 ]

(t)

STo (f ) = F(xTo (t))

Ŝx (f ) =
|STo (f )|2

To
(PSD Estimate)

PSD of a realization

S̄x (f ) = lim
To→∞

|STo (f )|2

To

|STo (f )|2

To
↔ 1

To

∫ To
2

− To
2

xTo (u)x∗To
(u − τ) du = R̂x (τ)
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Power Spectral Density of a Cyclostationary Process
X (t)X∗(t − τ) ∼ X (t + T )X∗(t + T − τ) for cyclostationary X (t)

R̂x(τ) =
1
To

∫ To
2

− To
2

x(t)x∗(t − τ) dt

=
1

KT

∫ KT
2

− KT
2

x(t)x∗(t − τ) dt (for To = KT )

=
1
T

∫ T

0

1
K

K
2 −1∑

k=− K
2

x(t + kT )x∗(t + kT − τ) dt (for even K )

−→
K→∞

1
T

∫ T

0
E [X (t)X∗(t − τ)] dt

=
1
T

∫ T

0
RX (t , t − τ) dt = RX (τ)

PSD of a cyclostationary process = F [RX (τ)]
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PSD of a Linearly Modulated Signal
• Consider

u(t) =
∞∑

n=−∞

bnp(t − nT )

• u(t) is cyclostationary wrt to T if {bn} is stationary
• u(t) is wide sense cyclostationary wrt to T if {bn} is WSS
• Suppose Rb[k ] = E [bnb∗n−k ]

• Let Sb(z) =
∑∞

k=−∞ Rb[k ]z−k

• The PSD of u(t) is given by

Su(f ) = Sb

(
e j2πfT

) |P(f )|2

T
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PSD of a Linearly Modulated Signal

Ru(τ)

=
1
T

∫ T

0
Ru(t + τ, t) dt

=
1
T

∫ T

0

∞∑
n=−∞

∞∑
m=−∞

E [bnb∗mp(t − nT + τ)p∗(t −mT )] dt

=
1
T

∞∑
k=−∞

∞∑
m=−∞

∫ −(m−1)T

−mT
E [bm+k b∗mp(λ− kT + τ)p∗(λ)] dλ

=
1
T

∞∑
k=−∞

∫ ∞
−∞

E [bm+k b∗mp(λ− kT + τ)p∗(λ)] dλ

=
1
T

∞∑
k=−∞

Rb[k ]
∫ ∞
−∞

p(λ− kT + τ)p∗(λ) dλ
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PSD of a Linearly Modulated Signal

Ru(τ) =
1
T

∞∑
k=−∞

Rb[k ]
∫ ∞
−∞

p(λ− kT + τ)p∗(λ) dλ

∫ ∞
−∞

p(λ+ τ)p∗(λ) dλ ↔ |P(f )|2∫ ∞
−∞

p(λ− kT + τ)p∗(λ) dλ ↔ |P(f )|2e −j2πfkT

Su(f ) = F [Ru(τ)] =
|P(f )|2

T

∞∑
k=−∞

Rb[k ]e −j2πfkT

= Sb

(
e j2πfT

) |P(f )|2

T

where Sb(z) =
∑∞

k=−∞ Rb[k ]z−k .
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PSD of Line Codes



Line Codes

0 1 1 0 1 1 1 0 1 0 1

Unipolar NRZ

Polar NRZ

Bipolar NRZ

Manchester

Further reading: Digital Communications, Simon Haykin, Chapter 6
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Unipolar NRZ
• Symbols independent and equally likely to be 0 or A

P (bn = 0) = P (bn = A) =
1
2

• Autocorrelation of bn sequence

Rb[k ] =


A2

2 k = 0

A2

4 k 6= 0

• p(t) = I[0,T )(t)⇒ P(f ) = T sinc(fT )e −jπfT

• Power Spectral Density

Su(f ) =
|P(f )|2

T

∞∑
k=−∞

Rb[k ]e −j2πkfT
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Unipolar NRZ

Su(f ) =
A2T

4
sinc2(fT ) +

A2T
4

sinc2(fT )
∞∑

k=−∞

e −j2πkfT

=
A2T

4
sinc2(fT ) +

A2

4
sinc2(fT )

∞∑
n=−∞

δ
(

f − n
T

)
=

A2T
4

sinc2(fT ) +
A2

4
δ(f )
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Normalized PSD plot
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Polar NRZ
• Symbols independent and equally likely to be −A or A

P (bn = −A) = P (bn = A) =
1
2

• Autocorrelation of bn sequence

Rb[k ] =

 A2 k = 0

0 k 6= 0

• P(f ) = Tsinc(fT )e −jπfT

• Power Spectral Density

Su(f ) = A2T sinc2(fT )
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Normalized PSD plots
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Manchester
• Symbols independent and equally likely to be −A or A

P (bn = −A) = P (bn = A) =
1
2

• Autocorrelation of bn sequence

Rb[k ] =

 A2 k = 0

0 k 6= 0

• P(f ) = jTsinc
( fT

2

)
sin
(
πfT

2

)
e−jπfT

• Power Spectral Density

Su(f ) = A2T sinc2
(

fT
2

)
sin2

(
πfT
2

)
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Normalized PSD plots
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Bipolar NRZ
• Successive 1’s have alternating polarity

0 → Zero amplitude

1 → +A or − A

• Probability mass function of bn

P (bn = 0) =
1
2

P (bn = −A) =
1
4

P (bn = A) =
1
4

• Symbols are identically distributed but they are not independent
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Bipolar NRZ
• Autocorrelation of bn sequence

Rb[k ] =


A2/2 k = 0
− A2/4 k = ±1

0 otherwise

• Power Spectral Density

Su(f ) = Tsinc2(fT )

[
A2

2
− A2

4

(
e j2πfT + e −j2πfT

)]
=

A2T
2

sinc2(fT ) [1− cos(2πfT )]

= A2T sinc2(fT ) sin2(πfT )
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Normalized PSD plots
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PSD of Passband Modulated Signals



Relating the PSDs of a Passband Modulated Signal
and its Complex Envelope

• Definitions
• sp(t) is a passband signal realization with complex envelope s(t)
• For observation interval To, ŝp(t) = sp(t)I[− To

2 ,
To
2

](t)
• ŝp(t) has complex envelope ŝ(t)
• ŝp(t)↔ Ŝp(f ) and ŝ(t)↔ Ŝ(f )

• PSD approximations for sp(t) and s(t)

Ssp (f ) ≈

∣∣∣Ŝp(f )
∣∣∣2

To
, Ss(f ) ≈

∣∣∣Ŝ(f )
∣∣∣2

To

• From the relationship between the deterministic signals

Ŝp(f ) =
1√
2

(
Ŝ(f − fc) + Ŝ∗(−f − fc)

)
• Since Ŝ(f − fc) and Ŝ∗(−f − fc) do not overlap, we have∣∣∣Ŝp(f )

∣∣∣2 =
1
2

(∣∣∣Ŝ(f − fc)
∣∣∣2 + ∣∣∣Ŝ∗(−f − fc)

∣∣∣2)
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Relating the PSDs of a Passband Modulated Signal
and its Complex Envelope

• Dividing by To∣∣∣Ŝp(f )
∣∣∣2

To
=

1
2


∣∣∣Ŝ(f − fc)

∣∣∣2
To

+

∣∣∣Ŝ∗(−f − fc)
∣∣∣2

To


• As the observation interval To →∞, we get

Ssp (f ) =
1
2
[Ss(f − fc) + Ss(−f − fc)]

• By a similar argument, we get

Ss(f ) = 2Ssp (f + fc)u(f + fc)
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