Preliminaries and Notation

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

Complex Numbers

- A complex number z can be written as $z=x+j y$ where $x, y \in \mathbb{R}$ and $j=\sqrt{-1}$
- We say $x=\operatorname{Re}(z)$ is the real part of z and
- $y=\operatorname{lm}(z)$ is the imaginary part of z
- In polar form, $z=r e{ }^{j \theta}$ where

$$
\begin{aligned}
& r=|z|=\sqrt{x^{2}+y^{2}} \\
& \theta=\arg (z)=\tan ^{-1}\left(\frac{y}{x}\right)
\end{aligned}
$$

- Euler's identity

$$
e^{j \theta}=\cos \theta+j \sin \theta
$$

Inner Product

- Inner product of two $m \times 1$ complex vectors

$$
\mathbf{s}=(s[1], \ldots, s[m])^{T} \text { and } \mathbf{r}=(r[1], \ldots, r[m])^{T}
$$

$$
\langle\mathbf{s}, \mathbf{r}\rangle=\sum_{i=1}^{m} s[i] r^{*}[i]=\mathbf{r}^{H} \mathbf{s}
$$

- Inner product of two complex-valued signals $s(t)$ and $r(t)$

$$
\langle s, r\rangle=\int_{-\infty}^{\infty} s(t) r^{*}(t) d t
$$

- Linearity properties

$$
\begin{aligned}
\left\langle a_{1} s_{1}+a_{2} s_{2}, r\right\rangle & =a_{1}\left\langle s_{1}, r\right\rangle+a_{2}\left\langle s_{2}, r\right\rangle, \\
\left\langle s, a_{1} r_{1}+a_{2} r_{2}\right\rangle & =a_{1}^{*}\left\langle s, r_{1}\right\rangle+a_{2}^{*}\left\langle s, r_{2}\right\rangle .
\end{aligned}
$$

Energy and Cauchy-Schwarz Inequality

- Energy E_{s} of a signal s is defined as

$$
E_{s}=\|s\|^{2}=\langle s, s\rangle=\int_{-\infty}^{\infty}|s(t)|^{2} d t
$$

where $\|s\|$ denotes the norm of s

- If energy of s is zero, then s must be zero "almost everywhere"
- For our purposes, $\|s\|=0 \Longrightarrow s(t)=0$ for all t
- Cauchy-Schwarz Inequality

$$
|\langle s, r\rangle| \leq\|s\|\|r\|
$$

with equality \Longleftrightarrow for some complex constant a,
$s(t)=\operatorname{ar}(t)$

Convolution

- The convolution of two signals r and s is

$$
q(t)=(s * r)(t)=\int_{-\infty}^{\infty} s(u) r(t-u) d u
$$

- The notation $s(t) * r(t)$ is also used to denote $(s * r)(t)$

Delta Function

- $\delta(t)$ is defined by the sifting property. For a signal $s(t)$

$$
\int_{-\infty}^{\infty} s(t) \delta\left(t-t_{0}\right) d t=s\left(t_{0}\right)
$$

- Convolution of a signal with a shifted delta function gives a shifted version of the signal

$$
\delta\left(t-t_{0}\right) * s(t)=s\left(t-t_{0}\right)
$$

- Sifting property also implies following properties
- Unit area

$$
\int_{-\infty}^{\infty} \delta(t) d t=1
$$

- Fourier transform

$$
\mathcal{F}(\delta(t))=\int_{-\infty}^{\infty} \delta(t) e^{-j 2 \pi t t} d t=1
$$

Indicator Function and Sinc Function

- The indicator function of a set A is defined as

$$
I_{A}(x)= \begin{cases}1, & \text { for } x \in A \\ 0, & \text { otherwise }\end{cases}
$$

- Sinc function

$$
\operatorname{sinc}(x)=\frac{\sin (\pi x)}{\pi x}
$$

where the value at $x=0$ is defined as 1

References

- pp 8 -13, Section 2.1, Fundamentals of Digital Communication, Upamanyu Madhow, 2008

