
EE 706 : Communication Networks

Lecture Notes Version 0.1

Saravanan Vijayakumaran

Department of Electrical Engineering

Indian Institute of Technology, Bombay

Spring 2010

Chapter 1

Introduction

1.1 What is a Communication Network?

In the context of this course, communication is the transfer of information between geographi-
cally separated points. The information transferred can be digital like a string of bits constituting
an image file or it can be analog like a voice signal. The systems which are used to achieve com-
munication are called communication systems. Communication between two communication
systems can either be in one direction or in both directions.

When communication is possible between two communication systems, they are said to be con-
nected and a connection or a communication link is said to exist between them. A communication
network is a collection of communication systems and the communication links which connect
them.

Communication networks are typically illustrated using graphs where the vertices represent
communication systems and an edge between a pair of vertices represents a direct connection
between the corresponding communication systems. Two communication systems are said to
have a direct connection between them if they can communicate without the help of a third
communication system. The directionality of the edge denotes the direction in which the com-
munication can take place. The vertices of the graph representing a communication network
are commonly referred to as nodes. In the interest of brevity, we will use often use the terms
nodes and communication systems interchangeably. Figure 1.1a shows a graphical illustration
of a communication network consisting of two nodes A and B where the transfer of information
can occur only from A to B but not in the other direction. Figure 1.1b shows a communication
network again consisting of two nodes where information transfer can occur from either node
to the other. These two graphs represent two different communication networks because the
connection between the nodes is different. Figure 1.1c shows a communication network with
three nodes A, B and C where there is no direct connection between nodes B and C. Informa-
tion transfer between nodes B and C can occur but this will require the node A to relay the
information, which is why we have not drawn an edge between B and C.

1

A B

(a) Communication network with
two nodes connected by a unidirec-
tional link

A B

(b) Communication network with
two nodes connected by a bidirec-
tional link

A B

C

(c) Communication network with
three nodes

Figure 1.1: Graphical representation of communication networks

1.2 Issues in Communication Network Design

While the above definition of a communication network is general enough to encompass the
postal system, a newspaper distribution system, the announcement sytem at a railway station
and FM radio, we will be focussing our attention on computer communication networks. In
computer networks, the information to be communicated can always be represented by a string
of bits and the communication is performed using electrical or electromagnetic signals. As a
consequence of the first characteristic, the communication systems constituting such a network
are invariably digital communication systems. By a computer, we mean any electronic device
capable of storing, transmitting and receiving digital information. For example, a cell phone,
a pager or even a satellite can be considered a computer in this context. Another prevalent
characteristic of computer communication networks is that very long information bit strings
are broken down into smaller bit strings called frames or packets which are then transferred
across the network sequentially. The advantages of using packets will be explained in the next
few sections as and when the appropriate context arises. Let us consider the issues involved in
designing a computer communication network.

1.2.1 The Physical Channel

Communication between geographically separated locations requires some physical phenomenon
to enable the information transfer. The physical medium through which the communication
takes place is called a channel. For example, when we speak the acoustic channel is carrying the
sound waves generated to the listener.

In the case of computer communications, the channel is chosen based on user requirements and
system parameters. For example, if the distance of between the communication systems is small
and if their locations are fixed, a conducting wire is used to physically connect them and electrical
signals are used to transfer information between them. Such a channel is called a wired channel.
A fibre optic channel where the information is transferred using optical pulses travelling along
an optical fibre is also an example of a wired channel. Even if the distances involved are short
but the communication systems are required to be mobile the information is transferred using
electromagnetic waves radiated through free space. Such a channel is called a wireless channel. A
wireless channel is also chosen for long-distance communication between fixed locations because

2

Information
Source

Modulator Channel

Noise Source

Demodulator
Information
Destination

Transmitter Receiver

Figure 1.2: Basic block diagram of the communication process

it is more cost-effective than using a wired channel. Sometimes there is no option in choosing
between wired and wireless channels like, for example, in satellite communication.

As mentioned before, the information to be transferred in computer communications is a string of
bits. Irrespective of whether the channel is wired or wireless, a string of bits is not suitable for im-
mediate sending across a channel. It has to be first mapped to a signal (electric/electromagnetic)
which can pass through the channel. This mapping process is called modulation and the subsys-
tem of the communication system which performs this mapping is called the transmitter. The
transmitted signal passes through the channel and arrives at the destination after being sub-
jected to delay, distortion and attenuation. All the distorting effects of the channel are together
characterized as noise. The communication system at the destination maps the noisy signal
back to a string of bits which is ideally a copy of the information at the source. This inverse
mapping process is called demodulation and the subsystem of the communication system which
performs this is called the receiver. The demodulation process is not perfect and often results in
errors which are defined as differences between the string of bits used as input to the modulator
and the string of bits obtained as the output of the demodulation process. Since most computer
communication systems send and receive information, they contain both the transmitter and
receiver subsystems which together constitute what is often called a modem (modulator and
demodulator). Figure 1.2 shows a simplified block diagram of the communication process.

The goal of a modem is to transfer information from the transmitter to the receiver as fast as
possible with the fewest possible errors. The speed of transfer is called the data rate and is
simply the number of bits which can be transferred per second. The error performance of a
modem is characterized by the bit error rate (BER). The BER is defined as the probability that
a bit is received erroneously when it is transmitted across the channel. The maximization of the
data rate and minimization of BER are the primary yet conflicting design criteria for modems.

Every physical communication channel has a finite bandwidth which is defined as the size of the
range of frequencies which pass through the channel without severe attenuation. The noise level
in a channel is typically characterized by the signal-to-noise ratio (SNR) which is defined as the
ratio of the signal power and the noise power in the channel. For a fixed signal power, a channel
with high SNR implies a channel with low noise levels and vice versa. The bandwidth together
with the SNR in the channel determine the data rates which can be achieved at a particular
BER.

The subject of modem design is treated in detail in courses on digital communication. The topics
covered include the design of efficient modulation schemes, techniques to combat the harmful
effects of channel noise and the design of optimal demodulation schemes. In this course, we will
not address these design issues. We will assume that the channels between the nodes in the
communication network are capable of transferring bits at a particular data rate and BER. So
we are effectively clumping the physical channel and the modem together into a channel which
behaves like an unreliable bit pipe. It takes bit strings as input and outputs bit strings which

3

Information
Source

Channel
Encoder

Modulator Channel

Noise Source

Demodulator
Channel
Decoder

Information
Destination

Transmitter Receiver

Figure 1.3: Basic block diagram of the communication process including channel encoder and
decoder blocks

have some bits flipped relative to the input strings. We will focus our attention on the strategies
which are used to enable reliable communication between the nodes of a communication network
given that the channels connecting the nodes are unreliable.

1.2.2 Reliable Communication

Most users of computer communication networks cannot tolerate errors irrespective of whether
the information being transferred is a text message or a bank account number. Given that the
links connecting the nodes in the communication network introduce errors, we need strategies
which will eliminate such errors and make the communication reliable or error-free.

Error Correction and Detection

One way to eliminate errors in the received bit strings is to use forward error correction (FEC)
schemes. An FEC scheme modifies the bit string at the source node before it enters the modula-
tor by adding redundancy to it. This redundancy is used at the receiver to eliminate errors in the
bit string obtained as the output of the demodulator at the destination node. An FEC scheme is
also called an error correcting code (ECC) or channel code, where the latter name is due to the
fact that the scheme is responsible for correcting errors introduced by the channel distortion.
The subsystem of the communication system which adds the redundancy to the input bit string
is called the FEC encoder or channel encoder. The subsystem of the communication system
which eliminates errors in the bit string at the output of the demodulator is called the FEC
decoder or channel decoder. Figure 1.3 shows the location of the channel encoder and decoder
in the block diagram of the communication process. In this case, the transmitter consists of
the channel encoder and the modulator while the receiver consists of the demodulator and the
channel decoder.

The number of errors which can be corrected by an ECC is directly proportional to the amount
of redundancy which is added to the input bit string. The more the redundancy added, the
more the number of errors which can be corrected. But this error correction capability comes at
the cost of requiring the tranmission of a bit string which is much longer than the original bit
string representing the information to be communicated. The amount of redundancy introduced
by an ECC is measured in terms of its rate which is defined as the ratio of the lengths of the
information bit string and the bit string obtained after the addition of redundancy to information
bit string. For example, if the information bit string is k bits long and the bit string obtained
after addition of redundancy is k + n bits long, the rate of this ECC will be k

k+n
. The rate

of an ECC is an example of a more general concept called throughput which is the defined as
the average number of information bits that are communicated through the channel in a unit of

4

time. On a channel with fixed data rate, a lower rate implies a larger delay in transferring the
information bit string from source to destination. The tradeoff between rate and error correcting
capability is the fundamental challenge in the design of channel codes. Good codes have high
values for these two parameters along with low-complexity encoding and decoding algorithms.

For a fixed rate, the number of errors which can be corrected by an ECC is upper bounded. If the
number of errors introduced by the channel noise exceeds this upper bound, the channel decoder
output will still contain errors. Such a situation is definitely undesirable and we need strategies
which can counter it. One strategy is to ask the source node to resend the message. The
channel noise is usually a random process and consequently the number of errors it introduces
in the transmitted bit string varies from one transmission to the next. So we can hope that
the number of errors in the second transmission is less than the number of errors which the
ECC can correct, resulting in an error-free communication of the information bit string. This
strategy sounds like it might work except for one subtle assumption. It implicitly assumes
that we can tell when the channel decoder output contains errors. This is not trivial since the
information bit string at the channel encoder input can be any finite length bit string and hence
we should expect any bit string of same length to appear at the output of the channel decoder.
We can misunderstand a bit string with errors at the channel decoder output to be the error-free
decoder output corresponding to a different input bit string. This issue is resolved by preventing
the input bit string at the channel encoder output from being any arbitrary bit string. This
is done by appending a fixed number of check bits to the information bit string which are a
deterministic function of the information bit string. At the channel decoder output, the check
bits are recalculated using the same deterministic function acting on the decoded information
bits and compared to the decoded check bits. The deterministic function is chosen such that
errors in the decoder output will cause a discrepancy between the recalculated check bits and
the decoded check bits. Such a discrepancy is called an error detection and the mapping of the
information bit string to a combination of the information bit string and the check bit string is
called an error detection code.

The simplest example of an error detection code is the single parity check code where a single
parity bit is appended to an information bit string. The parity bit is set to 0 if the number of
ones in the information bit string is even and to 1 if the number of ones is odd. If there are
no errors introduced when this appended bit string is transmitted across the channel, the bits
will sum to zero modulo two. If there is a single bit in error, the bits will sum to 1 modulo two
and the error is detected. However, this scheme cannot detect two bit errors or any pattern of
bit errors of even size for that matter. But it can detect all errors of odd size. In practice, a
more powerful error detection code called the cyclic redundancy check (CRC) is used. Figure 1.4
shows the location of the CRC encoder and decoder in the block diagram of the communication
process. Of course, the CRC code further reduces the throughput of the communication scheme.
For example, suppose the CRC code has rate R1 (R1 < 1) and the ECC has rate R2 (R2 < 1).
Then a communication scheme with data rate D bits per second which only involves the FEC
code has throughput R2×D bits per second while a communication scheme which has the same
data rate but involves both the CRC and FEC codes has throughput R1 × R2 × D bits per
second which is less than R2 ×D.

Automatic Repeat Request

The process of requesting the source to resend the information once an error is detected in the
decoded bit string is called automatic repeat request (ARQ). In reality, the destination does
nothing when it detects an error in the decoded bit string. However, it does send a reply

5

Information
Source

CRC
Encoder

Channel
Encoder

Modulator Channel

Noise Source

Demodulator
Channel
Decoder

CRC
Decoder

Information
Destination

Transmitter Receiver

Figure 1.4: Basic block diagram of the communication process including channel code and CRC
code blocks

message called an acknowledgement when it does not detect any errors in the decoded bit
string. The source starts a timer after transmitting a information bit string and waits for an
acknowledgement. If the acknowledgement is not received within a predetermined time duration,
a timeout event occurs and the source decides that the received message was corrupted. It then
retransmits the information bit string. Thus ARQ involves implicitly requesting the source to
resend the corrupted information.

An error detecting code like the CRC is essential for the correct functioning of an ARQ system
but an ECC is not. In fact, an ARQ system is often used to provide reliable communication
without using an ECC across channels where bit errors are rare, i.e. when the BER is low. This
is because using an ECC results in the transmission of redundant bits even when the channel
does not introduce any bit errors, reducing the throughput. On the other hand, using ARQ will
result in retransmissions and hence throughput reduction only when the channel introduces bit
errors. In this sense, an ARQ-based communication scheme trades throughput for reliability
adaptively. The throughput reduction due to the presence of the CRC code occurs irrespective
of whether we use an ECC in conjunction with the ARQ scheme or not. Of course, an ECC
becomes essential when the channel introduces frequent errors, i.e. when the BER is high. This
is because a purely ARQ-based scheme relies on the chance that when an error is detected in
the demodulated bit string one of the retransmissions will pass through the channel without any
errors being introduced. Such an event is likely only when the BER is low but will require a
very large number of retransmissions when the BER is high. In the latter case, using an ECC
will result in a reduction in the BER and the subsequent ARQ mechanism will require fewer
number of retransmissions.

Now we have enough background to discuss the first advantage of dividing long information bit
strings in to smaller bit strings or packets before transmission. Suppose we want to communicate
a million bits across a channel which has a BER of 10−6. Such a channel introduces, on the
average, one error in every million bits which are transmitted across it. If we transmit the one
million bits at once and if an error is detected by the CRC code, we will have to retransmit the
million bits. If we assume, for simplicity, that the second transmission contains no bit errors the
throughput is halved because we had to transmit twice the number of bits to communicate the
million bits. Now consider a packetized system where the million bits are divided into packets
of size 100,000 bits each and transmitted one packet at a time. Since the channel introduces
one error every million bits, only one of the packets will contain an error and will need to be
retransmitted. Once again if we assume the second transmission contains no bit errors, the
throughput reduction is only due to the retransmission of the 100,000 bits long packet and is
approximately 10%.

In this course, we will discuss several ARQ schemes which represent a tradeoff between through-
put, link utilization and buffer size requirements at the transmitter and receiver. The last two
parameters in this tradeoff will be introduced and discussed in detail in a later chapter.

6

Multiaccess
Channel

Source 2

Source 1

Source 3

Destination 2

Destination 1

Destination 3

Figure 1.5: Illustration of the multiple access communication process

1.2.3 Multiple Access Channels

The channels we have considered so far are called point-to-point channels where the received
signal at the destination node depends only on the signal transmitted by the source node and the
channel noise. A point-to-point channel is used exclusively by a single source-destination node
pair for communication. However, there are some channels called multiaccess or multiple access
channels which are shared by several source-destination node pairs for communication. In this
case, the received signal at a destination node depends on the signal transmitted by several source
nodes. Typically, it is the sum of the attenuated transmitted signals corrupted by channel noise.
Figure 1.5 illustrates a multiple access communication scenario between three source-destination
node pairs. The received signal at any destination depends on the signal transmitted by all three
source nodes. The simplest example of a multiple access channel is the wireless channel when
multiple source-destination node pairs located within each other’s transmission range use the
same frequency band to communicate. Multiple access communication does not necessarily
imply an equal number of sources and destinations. For example, in satellite communication a
single satellite may be communicating with multiple ground stations using the same frequency
band.

Multiple access channels are not always wireless. For example, consider a collection of nodes
which are located in close proximity to each other. Suppose each node in this collection needs
to communicate with every other node. One method to achieve this is to create a point-to-point
wired channel from each node to every other node. This is illustrated in Figure 1.6a for a
collection of eight nodes where the shaded circles represent the nodes and the edges represent
the wired channels. Such an approach does not scale well as the number of nodes increases. A
more cost-effective solution which is used in practice is to connect the nodes using a bus which is,
in this context, a wired multiple access channel as illustrated in Figure 1.6b. Any transmission
by a node is sent across the bus and is heard by all the nodes. The node which is the intended
receiver will demodulate the received signal and obtain the information destined for it.

There are two issues with the system shown in Figure 1.6b which are common to all multiple
access communication systems. The first one is addressing. The source node has to include the
identity or address of the intended receiver of the information along with the information itself.
This will enable all the nodes except the intended receiver to ignore the information and the
intended receiver to accept it. The address of the receiver or the destination address is trans-
mitted before the information bits as part of the header. The reason is that the receiving nodes
need not process the whole information bit string before ignoring the transmission. Typically
the receiving node needs to send back some information back to the source node. To enable this
the header also contains the address of the source node or the source address. Of course, we
have not discussed what exactly constitutes an address. The address structure is highly system

7

(a) A collection of eight nodes con-
nected by point-to-point wired links

(b) A collection of eight nodes con-
nected by a wired bus

Figure 1.6: Illustration of the point-to-point link and multiple access bus topologies

dependent but in general an address can be thought of as a string of bits which uniquely identify
a node. In many systems, the manufacturer assigns this address to a node.

The second and more important issue is that of sharing the channel access among the source-
destination pairs or channel allocation. A collision occurs when two nodes send information at
the same time onto the bus. The received signal at all the other nodes will be a superposition
of the transmitted signals and cannot be demodulated correctly at their respective receivers.
Distributed algorithms called medium access control (MAC) protocols are used to avoid or recover
from collisions in multiple access channels. For this reason, the addresses described in the
previous paragraph are called MAC addresses. MAC protocols require the cooperation of all the
nodes sharing the multiple access channel and run in a distributed fashion on all of them.

Some MAC protocols are based on the principle of random access which works well if the sources
send information infrequently. In this approach, a source node sends information whenever it
needs to and hopes for no collisions. When collisions occur, the source node knows that there
are other nodes competing to access the channel. All the source nodes involved in the collision
then time their retransmissions carefully in order to minimize the chances of future collisions.
An improvement over the pure random access MAC protocols is carrier sense multiple access
(CSMA). In this scheme, the source node senses the channel to check if a transmission is ongoing
and transmits only if the channel is idle. This scheme does not necessarily mean that the
transmitted signal needs to have a carrier. It is used in baseband systems as well and the
terminology is because it was developed initially for narrowband systems.

Random access MAC protocols do not perform well if the collisions are frequent, that is when
the source nodes want to send information frequently. In this case, MAC protocols based on
scheduling or reservation are used. Such MAC protocols are also called conflict-free protocols
because they ensure that a transmission is always successful by preventing interference from
other transmissions. Time division multiple access (TDMA) is a MAC protocol where the
time axis is divided into slots and each slot is allotted to a source node for transmission. In
frequency division multiple access (FDMA), the frequency bandwidth is divided into smaller
bands which are then allocated to the source nodes. The assignment of time slots or frequency
bands can be static or dynamic. There are also other reservation-based MAC protocols suitable
for wireless channels where the source and destination nodes exchange control messages before
actual information transmission. These control messages are received by all the nodes in the
transmission range who then refrain from transmitting until the source-destination pair has

8

S

R1

R2

R3

R4

D

(a) A 6-node communication network where every node
is reachable from every other node

S routing table

RN NH RC

R1 R1 1

R2 R2 1

R3 R1 2

R4 R2 2

D R2 3

R1 routing table

RN NH RC

S S 1

R2 R2 1

R3 R3 1

R4 R2 2

D R3 2

R2 routing table

RN NH RC

S S 1

R1 R1 1

R3 R4 2

R4 R4 1

D R4 2

R3 routing table

RN NH RC

S R1 2

R1 R1 1

R2 R4 2

R4 R4 1

D D 1

R4 routing table

RN NH RC

S R2 2

R1 R2 2

R2 R2 1

R3 R3 1

D D 1

D routing table

RN NH RC

S R3 3

R1 R3 2

R2 R4 2

R3 R3 1

R4 R4 1

(b) Illustration of routing tables for the 6-node network where RN, NH and RC are
abbreviations of reachable node, next hop and routing cost, respectively. The routing
cost is the hop count here.

Figure 1.7: Illustration of routing in a communication network

completed communication.

In this course, we will discuss both random access and conflict-free MAC protocols suitable for
wired and wireless multiple access channels.

1.2.4 Routing

As the size or geographical spread of a communication network increases, many pairs of nodes
will not have a direct communication link and will depend on other nodes to relay information be-
tween them. A sequence of relay nodes which transfer information between a source-destination
node pair is called a route. A route implicitly also consists of the communication links which
connect the source and destination to the relay nodes and the links which connects the relay
nodes to each other. A node is said to be reachable from a source node if a route exists from the
source node to it. Figure 1.7a illustrates a communication network where every node is reachable
from every other node. One route between S and D can be S −R1 −R3 −D which consists of
the relay nodes R1 and R3. Other possible routes are S−R2−R4−D and S−R1−R2−R4−D.

9

Discovering a route between a source-destination pair and selecting among multiple routes (if
they exist) is the function of a routing algorithm. A routing algorithm is a distributed algorithm
which is implemented using a routing table at each node in the network. The routing table at
a source node consists of a list of all nodes reachable from it together with a next-hop node
and routing cost associated with each reachable node. The next-hop node asssociated with a
reachable node is the relay node to which the information must be forwarded by the source node
in order for the information to be transferred to the reachable node. The next-hop node is always
one which is directly connected to the source node. The routing cost is a quantitative measure
of the desirabilty or undesirability of a route. Examples of routing cost are the total latency
experienced by a packet traversing the route or the hop count, the number of links constituting
a route. Ideally, we would like the routing table at a node to contain routes which are optimum
with respect to the routing cost among all available routes to another node. Figure 1.7b shows
routing tables for all the nodes in the network shown in Figure 1.7a using hop count as the
routing cost. When node S wants to send information to node D it will look in its routing table
(top left table in Figure 1.7b) for the next hop corresponding to D, which is node R2 in this
case. It will send the information to R2 which will then look for the next hop corresponding to
node D in its own routing table (top right table in Figure 1.7b), which is R4. Node R2 forwards
the information to node R4 which then looks in its own routing table (bottom middle table in
Figure 1.7b) and finds that D is directly connected to it because the next hop corresponding to
D is D itself. So R4 sends the information to D and the information is successfully routed from
S to D.

The first issue in routing is the construction of a routing table at a node containing routes
to every other node in the network in a distributed manner. This is achieved using neighbor
discovery and flooding. The neighbors of a node in a communication network are defined as
all those nodes which have a direct communication link to it. Each node first discovers which
nodes are its neighbors and then calculates the routing cost to each of them. It then constructs
a routing table containing its immediate neighbors and floods it (sends it to all its neighbors).
Each node calculates a new routing table based on the information received from its neighbors
and floods this information until a stable routing picture of the network is obtained. Implicit
in this description is the existence of a unique identity or routing address associated with each
node. This address is different from the MAC address described in the section on multiple access
channels. While MAC addresses only need to be unique, routing addresses need to have some
kind of logical structure to keep the routing table sizes small. A simply unique routing address
will result in the routing table at every node containing one entry per node. But if the routing
addresses are assigned to nodes such that a group of nodes which are located near each other
have routing addresses with the same prefix, then the routing table at a node which is far away
from this group only needs to have one entry containing the prefix for all the members of this
group. A small routing table not only reduces the memory requirement at each node but also
reduces the amount of information which needs to be exchanged between the nodes.

The second issue in routing is ensuring that the routes present in the routing table are the
optimal routes in the sense of having minimum routing cost. This is achieved by the routing
protocols which are implemented such that the route to a node is updated only when a route
having lower routing cost is known. This is complicated further by the occurrence of sporadic
node or link failures which make some routing table entries invalid or by the appearance of
new routes with lower cost which make some routing table entries suboptimal. Thus routing
algorithms need to be running continuously to prevent the routing tables from becoming stale.

A consequence of the presence of multiple routes is the possibility of out-of-order delivery of
packets at a destination, that is packets which were sent in a particular order by the source

10

S1

S2

R D

10 Mbps

10 Mbps

1 Mbps

Figure 1.8: Illustration of congestion in a four-node communication network

arrive at the destination in a different order. Hence there is a need to tag the packets sent by
the source with a sequence number which can then be used by the destination to reorder them.
Such a sequence number is also useful in requesting the source to resend a packet in case one is
lost and the other arrive correctly.

In this course, we will discuss different routing algorithms and addressing schemes used to achieve
routing in the Internet.

1.2.5 Flow and Congestion Control

When a packet arrives at a receiving node, it is stored in a region of memory present in the
node which is called a buffer. The buffer is used to temporarily store the packet until further
processing can be performed on it. This subsequent processing can be the copying of the packet
to a disk drive or consumption of the information in the packet by the end user. An example
of the latter case is when the information in the packet represents part of a music file which
the end user is listening to. Once the necessary processing has been performed on the packet,
the corresponding buffer can be freed and reused. The amount of buffer space available in a
node is limited. If packets arrive faster than they can be processed, the buffer will be filled
at a faster rate than it can be emptied. This will eventually result in the buffer being filled
up completely and subsequently arriving packets will be dropped. Such an event is called a
buffer overflow. This is undesirable since it results in loss of information even when the channel
connecting the source and destination is error-free. A mechanism which throttles the rate at
which the source sends information to the destination and prevents buffer overflow is called a
flow control mechanism. Flow control is performed by the destination by informing the source
regarding the maximum amount of information it can receive without overflowing its buffer. It
also informs the source about the previously sent information which it has already processed
and removed from the buffer. The source is then able to calculate the amount of information it
can safely send without causing buffer overflow at the destination.

Flow control prevents a single source from overflowing the buffer at a destination. Congestion
control, on the other hand, prevents a set of sources from causing buffer overflows anywhere
in the communication network. A network is said to be congested if buffer overflows occur
frequently in its nodes. Figure 1.8 shows a four-node network with two sources, one relay node
and one destination. The links from the sources S1 and S2 to the relay node R support a data
rate of ten megabits per second (Mbps). The link from R to the destination D supports a data
rate of 1 Mbps. If both the sources send information destined for D at 10 Mbps, the packets

11

will get queued at the relay node R since the outgoing link to D supports information transfer
at only 1 Mbps. The buffer at node R will overflow and packets will begin to be dropped at R
resulting in congestion. Although the packets are being dropped at R, it is common to say that
the links from S1 to R and S2 to R are congested because it is the packets arriving on these
links which are being dropped.

An obvious solution to the congestion in the above example is to employ flow control on the
sources S1 and S2 by asking the relay node R to throttle the amount of information they send
to it. But this method causes additional packets to be sent from R to the sources which is not
scalable as the number of sources increases. A simpler method which does not require the relay
node to transmit additional packets is the following. Each source starts a timer waiting for an
acknowledgement from the destination D for every successful packet reception. If the packets
are dropped at R, timeout events will occur at a source and it will infer that the network is
congested. It then reduces the rate at which it transmits information. If both the sources reduce
their individual rates of transmission, the congestion will reduce and eventually disappear.

Congestion is considered a serious problem in communication networks and sources often reduce
their transmission rates aggressively in order to prevent it as quickly as possible. Once congestion
has been avoided, the source transmission rates may be much lower than what the network can
support without congestion. Such a situation is also undesirable as it increases the delay in
the information transfer from the sources to their respective destinations. The solution is to
continue to reduce source transmission rates aggressively when timeouts occur but increase the
rates conservatively if acknowledgements arrive from the destination. Such a congestion control
scheme guarantees that congestion is prevented quickly and that the source transmission rates
are slowly brought up to levels where they do not result in congestion.

This scheme helps the sources recover from congestion once it occurs but it needs some packets
to be dropped before it can detect congestion. An alternative is to use schemes which predict
the ocurrence of congestion and take steps to avoid it before it occurs. Such schemes are called
congestion avoidance schemes. A simple example is random early detection (RED) where the
relay nodes monitor the amount of free buffer space and when they find that it is about to be
exhausted they randomly drop a packet which was sent to them. This causes the source of the
packet to timeout while waiting for the acknowledgement corresponding to that packet from the
destination and eventually reduce its transmission rate. If there are other sources which can still
cause congestion at the relay node, their packets will be populating a significant percentage of
the buffer and a random drop will pick their packet with high probability. In this way, all the
sources can possibly cause congestion will be eventually throttled.

In this course, we will discuss flow control, congestion control and congestion avoidance schemes
which are either used or proposed for use on the Internet.

1.2.6 Security

Network security is the field addressing the problem of detecting, preventing or recovering from
any action which compromises the security of the information being transferred in a communi-
cation network. The actions which constitute a security compromise can be one of the following:

• Eavesdropping : The users of a communication network often wish to communicate sensitive
information which needs to be kept secret from unauthorized users who are also called
adversaries. Eavesdropping is said to occur if an adversary can intercept and understand

12

an information transfer in the network. Eavesdropping can be prevented by encrypting
the information before communication and a scheme which achieves this is said to provide
confidentiality.

• Message modification: Even when an adversary cannot decode the contents of an infor-
mation transfer nothing prevents her from modifying the message resulting in a incorrect
message being delivered to the destination. A scheme which can detect message modifica-
tions is said to provide data integrity.

• Replay attack : A replay attack occurs when an adversary copies the information sent by
the source to the destination and resends it to produce harmful consequences. A scheme
which prevents replay attacks is said to provide originality.

• Delaying tactics: An adversary can also cause harm by intercepting an information transfer
from a source and sending it to the destination after a some delay. This does not violate
originality but can still have unintended consequences. A scheme which detects delaying
tactics is said to provide timeliness.

• Masquerading : An adversary can claim to be a particular authorized user and initiate
communication with other authorized users. A scheme which ensures that users are who
they claim to be is said to provide authentication. Authentication schemes are used to
provide access control which is the ability to limit access of network resources to authorized
users.

• Repudiation or bogus denial : Sometimes a source or a destination can deny that a commu-
nication which actually occurred never took place. A scheme which prevents such bogus
denials is said to provide nonrepudiation.

In this course, we will discuss (if time permits) the major security schemes used on the Internet
today.

1.3 Course Goals

• Understand the major issues in the design of communication networks.

• Understand the functioning of existing networks like the Internet, 802.11 WLAN and
Ethernet.

• Learn simple analytical tools used to do performance analysis of network protocols.

• Learn to do network simulation.

1.4 Reference Books

• Computer Networks: A Systems Approach, Larry Peterson and Bruce Davie, 2007 (4th
Edition)

• Communication Networks: Fundamental Concepts and Key Architectures, Alberto Leon-
Garcia and Indra Widjaja, 2004 (2nd Edition)

• Computer Networks, Andrew Tanenbaum, 2002 (4th Edition)

13

• Data Networks, Dimitri Bertsekas and Robert Gallager, 1992 (2nd Edition)

14

Chapter 2

Layering

In the previous chapter, we briefly looked at several issues in communication network design like
the physical channel, reliability in the presence of errors, multiple access channels, routing, flow
control, congestion control and security. The algorithms or schemes which provide a solution to
such issues are called protocols. Each of the issues requires the hardware or software implemen-
tation of a corresponding protocol. Every node in the communication network needs to contain
protocol implementations addressing at least some, if not all, of the issues. The complexity of
the implementations can be greatly reduced if the protocols corresponding to different issues are
organized in a modular fashion. In all real-world communication networks, the protocols are
grouped into layers which are arranged in a stack configuration. Each layer is responsible for
addressing one or more network issues and the mapping of issues to layers is chosen to enable less
complex implementations. Figure 2.1 shows a stack of layers together with the issues each layer
addresses. For example, layer 3 is responsible for routing and the protocols which constitute
this layer will be routing algorithms. Of course, this figure does not show the protocols which
constitute each layer.

The stacking of the layers signifies that each layer interacts only with the layers adjacent to it.
Each layer is said to provide a service to the layer above it by performing the task assigned to
it. The layer above can then operate under the assumption that the layer below it has fulfilled
its responsibilities. In Figure 2.1, for example, at a particular node the routing protocol in layer
3 can operate under the assumption that layer 2 has achieved error-free communication to its
neighboring nodes. In this sense, the organization of the layers is such that the bottom layers
handle issues that are more essential. The ordering of the layers in the stack also represents
the order in which transmitted or received information is acted upon by the different layers.
When a packet is received from the channel, layer 1 will first process it by demodulating the
received signal. Then layer 2 will check if the received packet contains errors and send an
acknowledgement to the source if there are no errors. If errors are present, layer 2 will wait for a
retransmission from the source and pass the packet to layer 3 only when it does not detect any

Layer 4

Layer 3

Layer 2

Layer 1

Congestion Control, Flow Control
Routing
Reliability, MAC
Modulation, Demodulation

Figure 2.1: An example showing the mapping of communication network issues to layers

15

Application

Presentation

Session

Transport

Network

Data link

Physical

(a) The seven-layer
OSI model

Application

Transport

Internet

Host-to-network

(b) The four-layer
TCP/IP model

Application

Transport

Network

Data link

Physical

(c) The five-layer
hybrid model

Figure 2.2: The OSI, TCP/IP and hybrid reference models

errors in it. Then, layer 3 will check the destination routing address embedded in the packet
and forward the packet to the next hop node if the destination routing address does not match
the current node’s routing address. If there is a match, it will pass the packet to layer 4 which
can then perform flow control by throttling the source transmission rate if buffer overflow is
imminent. Similarly, when a node has information to send to a destination, layer 4 will first
check if it needs to reduce the size of the packet to conform to the flow control restrictions
imposed by the destination and then pass the packet to layer 3. Layer 3 will add the routing
address of the destination and routing address of the current node to the packet. It will also
find the next hop node to reach the destination by going through the entries in the routing table
and pass the packet to layer 2. Layer 2 will add FEC and CRC redundancy to the packet and
pass it to layer 1 which then modulates the packet bits into signal suitable for transmission over
the physical channel.

A collection of layers and the protocols which constitute them is called a network architecture.
There are two well-known models for a network architecture - the OSI reference model and the
TCP/IP reference model.

2.1 The OSI Reference Model

The ISO OSI (Open Systems Interconnection) reference model was developed to promote the
international standardization of the various layers of a network architecture. It is often referred
to as just the OSI reference model or OSI model for brevity. It consists of seven layers which
are shown in Figure 2.2a. We discuss the responsibilities of each layer below.

• Physical Layer : The physical layer is mainly concerned with modulation and demodula-
tion, i.e. transforming information bits received from higher layers to signals suitable for
transmission across the physical channel and transforming received signals to bits which
can be passed on to higher layers.

• Data Link Layer : The data link layer is concerned with making the unreliable bit pipe
provided by the physical layer between adjacent nodes into an error-free bit pipe. It
achieves this using CRC and ARQ. The data link layer is also concerned with flow control
between adjacent nodes. Since adjacent nodes may be connected by a multiple access
channel, medium access control is also the responsibility of the data link layer. A sublayer
of the data link layer called the MAC sublayer addresses this issue.

16

• Network Layer : Routing packets from source to destination using multiple relay nodes if
necessary is the responsibility of the network layer. This implicitly involves the assignment
of unique routing addresses to all the nodes in the network. Interconnecting heterogeneous
networks (internetworking) and congestion control are also the responsibilities of the net-
work layer.

• Transport Layer : The transport layer is concerned with delivering a message from a pro-
cess on the source node to a process on the destination. There may be multiple processes
running on a receiving node all of which are expecting to receive packets on a single inter-
face. The transport layer demultiplexes the packets arriving at a node to the appropriate
process. The layers from the transport layer upwards are all end-to-end layers, that is
they are concerned with end-to-end delivery. The three layers below the transport layer
are concerned with issues which occur between a node and its immediate neighbors. The
transport layer can provide a service corresponding to the end-to-end delivery of pack-
ets which are error-free and in order. It can also provide a best-effort service of sending
isolated messages which has no guarantees of about the reliability or order of delivery.

• Session Layer : The session layer’s responsibility is to enable sessions between source and
destination. It provides services like dialog control and synchronization between local and
remote applications.

• Presentation Layer : The presentation layer helps translate between different data repre-
sentation formats across different machines and networks. The presentation layer prepares
the received data into a form which the application layer can understand.

• Application Layer : The application layer provides a number of protocols which are used
by networking applications. Examples are HTTP (HyperText Transfer Protocol), FTP
(File Transfer Protocol) and SMTP (Simple Mail Transfer Protocol).

2.2 The TCP/IP Reference Model

The TCP/IP protocol was born out of a need to interconnect multiple heterogeneous networks
seamlessly in the ARPANET, which was a research network sponsored by the U.S. Department
of Defense in the 1970s. The TCP/IP reference model was developed much later to conveniently
describe the already existing layered structure of the TCP/IP protocol. The TCP/IP reference
model consists of only four layers - application, transport, internet and host-to-network layers,
as shown in Figure 2.2b. The application layer in the TCP/IP reference model corresponds to
the application layer in the OSI reference model. The TCP/IP model does not have the session
and presentation layers of the OSI model. If an application needs the functionality which these
layers provide under the OSI model, it would have to implement it on its own.

The transport and internet layers correspond to the transport and network layers of the OSI
model, respectively. The protocol which enables internetworking in the internet layer is called IP
(Internet Protocol). In addition to internetworking, the internet layer is responsible for packet
routing and congestion control/avoidance. The transport layer defines two end-to-end transport
protocols: TCP (Transmission Control Protocol) and UDP (User Datagram Protocol). TCP is
a reliable connection-oriented protocol that allows a byte stream originating on one machine to
be delivered without error to any other machine on the internet. UDP, on the other hand, is
an unreliable, connectionless protocol for applications like streaming audio which inherently can
tolerate occassional errors but not the delays which are the cost of reliability.

17

The TCP/IP reference model does not specify the responsibilities of the layers below the internet
layer, except that the host should connect to the network using some protocol so that it can
send IP packets.

2.3 A Hybrid Reference Model

The OSI reference model was created to be a guideline for implementing network protocols which
conformed to international standards. However, it was not widely adopted due to its complexity
and due to the widespread use of the TCP/IP protocols. The TCP/IP reference model was
created as an afterthought to describe the existing implementation of the widely used TCP/IP
protocols. The downside of this model was that it was not suitable for describing non-TCP/IP
networks like Bluetooth.

For pedagogical convenience, a hybrid reference model has been widely adopted in literature
which is shown in Figure 2.2c. It essentially looks like the OSI model with the exception of the
session and presentation layers. However, the coverage of the transport and network layers in
this hybrid model will focus on the TCP/IP protocols which is justified by their widespread use.

In this course, we will use the hybrid reference model to organize related topics.

18

Chapter 3

Physical Layer

The physical layer is concerned with modulation at a source node and demodulation at the
destination node. As we mentioned before, the maximization of the data rate and minimiza-
tion of the BER are the primary design criteria for the modulation/demodulation subsystems.
However, suboptimal demodulation schemes are sometimes used in the interest of reducing the
implementation complexity or increasing system robustness. The type of modulation and de-
modulation techniques used depends of the characteristics of the channel connecting the source
and the destination.

A channel is characterized by the range of transmitted signal frequencies it allows to pass through
without severe attenuation as well as the type of distortion it induces on the transmitted signal.
A channel which acts as a lowpass filter by allowing frequencies from zero upto a maximum
value to pass through is called a baseband channel. A channel which acts like a bandpass filter
by severely attenuating all frequencies except those present in a band located away from the
zero frequency is called a narrowband or bandpass channel. These two types of channels present
different challenges at the physical layer.

In this chapter, we give a brief description of the purpose and functionality of the various physical
layer subsystems. The goal is to enable the reader to see where the algorithms described in digital
communication courses are used to enable the correct functioning of a communication network.

3.1 Baseband Communication

Baseband channels typically appear when the channel is a conducting wire connecting the source
and destination. For example, the physical channel in Ethernet is a baseband channel consisting
of a twisted pair of wires. On baseband channels, pulse amplitude modulation (PAM) is the
method used to transmit digital information. PAM involves varying the amplitude of a pulse of
finite duration according to digital information to be sent. For example, the bit 1 is mapped to
the signal Ap(t) and the bit 0 is mapped to the signal −Ap(t) where p(t) is a unit-energy pulse of
duration T and A > 0 is the amplitude of the pulse. Then a string of bits {bk : k = 0, 1, . . . , N}
can be mapped to a sequence of pulses

x(t) =
N

∑

k=0

Bkp(t− kT) (3.1)

19

0 1 1 0 1 1 1 0 1 0 1

Unipolar NRZ

Polar NRZ

NRZI

Manchester

Differential
Manchester

Figure 3.1: Illustration of the different line coding schemes

where Bk = +A if bk = 1 and Bk = −A if bk = 0. This scheme of mapping bit strings to
signals is called polar nonreturn-to-zero (NRZ) encoding when p(t) = 1 for t ∈ [0, T] and 0
otherwise. The data rate of this scheme is 1

T
bits per second. A variation of this scheme is

the unipolar NRZ encoding where the bit 1 is mapped to a positive amplitude and the bit 0 is
mapped to the zero amplitude. Such schemes which maps bit strings to pulse trains are called
line coding schemes and are illustrated in Figure 3.1. Another variation which is an example
of a differential modulation technique is NRZ inverted (NRZI) encoding. In NRZI, the bit 1 is
mapped to signal level transition at the beginning of the bit interval and the bit 0 mapped to
no signal level transition. In these schemes, a long string of ones or zeroes in the information
bit string results in a constant amplitude which can result in the loss of timing information at
the receiver. The receiver typically has a timing recovery circuit which uses the transitions at
the edge of bit intervals to determine the bit boundaries. The knowledge of the bit boundaries
is essential for the correct operation of the matched filter demodulator which is optimum in this
scenario. There is always a drift between the clocks running in the transmitter and the receiver,
even if they run at the same frequency. The absence of transitions can throw off the receiver’s
timing recovery circuit. Note that NRZI encoding prevents the lack of transitions when a long
string of ones is sent but a long string of zeros will still cause a problem. Another advantage of
NRZI is that it will work even if the signal polarities are reversed due to incorrect wiring.

The two main limitations of the NRZ schemes is the presence of a dc component and lack
of guaranteed synchronization capability. The Manchester encoding scheme, which is used in
Ethernet, solves these problems by dividing the bit duration into two halves. The bit 1 is sent
by setting the signal to −A during the first half and to +A in the second half. So the bit 1
involves a mid-bit transition from low to high. The bit 0 is sent by having a mid-bit transition
from high to low. There is always a mid-bit transition which can aid in timing recovery and
there is no dc component. A differential Manchester scheme can be used to work in the case of
polarity reversal. It uses the maps a 0 bit to a signal level transition at the beginning of a bit
interval and a bit 1 to the absence of a transition at the beginning of a bit interval.

No matter which encoding scheme is used, the pulse duration is finite and a timelimited signal

20

is not bandlimited. So when the pulse is sent through a baseband channel which acts as a
lowpass filter, it will get smeared beyond its original duration. When a sequence of amplitude
modulated pulses are transmitted through this channel, each pulse will experience intersymbol
interference (ISI) from its neighboring pulses. The smaller the pulse duration T the more severe
the ISI. However, if T > 1

2W
where W is the cutoff frequency of the baseband channel ISI can

be avoided by choosing the transmitted pulses carefully so that the received pulses satisfy the
Nyquist condition for zero ISI. Thus the channel bandwidth limits the maximum pulse rate 1

T

to less than 2W pulses per second which is called the Nyquist signaling rate. If the channel
response is not known a priori, making the received pulses satisfy the Nyquist condition is not
possible. In this case, the ISI can be cancelled by filtering the received signal. This process is
called equalization. Equalization involves estimating the channel response and then using this
estimate to remove the ISI. To enable channel estimation, the information to be transmitted is
preceded by a preamble which is predetermined sequence of bits agreed upon by the transmitter
and receiver. This sequence is also called the training sequence. The training sequence also
aids in the initial estimation of the bit boundaries in the received signal. The receiver typically
detects the arrival of a packet by matching the training sequence. After the initial estimation
of the timing, the signal level transitions induced by the line coding schemes help update the
estimate in case of clock drifts. This updating is performed using a delay-locked loop (DLL)
circuit.

If we send one bit per pulse when the pulse rate is equal to the Nyquist rate, the maximum data
rate is limited to 2W bits per second. However, we can map multiple bits to a single pulse by
allowing more than two levels. For example, we could map 00 to −Ap(t), 01 to −A

3 p(t), 10 to
A
3 p(t) and 11 to Ap(t). In that case, the maximum data rate becomes 4W bits per second. In
general, if the number of amplitude levels are 2m wherem is a positive integer the maximum data
rate is 2Wm bits per second. This seems to suggest that we can increase the achievable data
rate by increasing the number of levels. But this strategy does not work due to the presence
of noise. As the number of levels increase while keeping the maximum amplitude constant,
the levels will get closer to each other and can be confused for each other easily resulting in
demodulation errors. These ideas are due to Claude Shannon who proved that the maximum
data rate in an additive white gaussian noise (AWGN) channel with bandwidth W and SNR S
can support with arbitrarily small BER is less than the following value,

C = W log2(1 + S) bits/second (3.2)

which is called the capacity of the channel. For our purposes, we assume that the a finite-
bandwidth baseband channel allows us to transmit at a finite data rate with a small but non-zero
BER where the data rates are directly proportional to the bandwidth.

In summary, the main physical layer issues in baseband channels are timing recovery and ISI
mitigation. Both of them influence the type of modulation scheme which is employed. For
example, line coding schemes which have frequent signal level transitions are chosen because
they aid timing recovery at the receiver. Transmitted pulse shapes are chosen to minimize ISI
at the receiver. So in fact it is the ease of demodulation in the presence of these issues which
is the factor determining the choice of modulation scheme. When pulse shaping to avoid ISI is
not feasible, equalization is used to remove it. Both equalization and initial timing recovery are
accomplished by the presence of a preamble which is sent immediately preceding the information-
bearing signal.

21

1 0 1 0 1 1

2T 3T 4T 5T 6T0 T

Binary amplitude
shift keying

Binary frequency
shift keying

Binary phase
shift keying

Figure 3.2: Illustration of binary ASK, FSK and PSK modulation schemes

3.2 Narrowband Communication

Communication through a narrowband channel involves the mapping of different signals to the
different values of the amplitude, frequency or phase of a sinusoidal electromagnetic wave which
is also called a carrier.

Amplitude Shift Keying

The simplest amplitude modulation scheme for narrowband channels is binary amplitude shift
keying (ASK) which corresponds to mapping the bit 1 to a sinusoidal signal and the bit 0 to no
signal at all. Then a string of bits {bk : k = 0, 1, . . . , N} can be mapped to a sequence of pulses

s(t) =
N

∑

k=0

pk(t− kT) (3.3)

where each pulse has duration T and is given by

pk(t) =

{

Ac sin(2πfct) if bk = 1
0 if bk = 0

(3.4)

for t ∈ [0, T], where Ac is the amplitude of the transmitted carrier and fc is the carrier frequency.
This is illustrated in Figure 3.2. Non-binary ASK schemes are also possible which involve the
mapping of groups of bits to multiple amplitude levels of the carrier wave.

22

Frequency Shift Keying

A modulation scheme which modifies the frequency of the carrier wave according to the digital
information to be sent is called frequency shift keying (FSK) scheme. For example, a binary
FSK scheme maps the bit 0 to a sinusoidal signal with frequency f1 and a bit 1 to a sinusoidal
signal with frequency f2. As before, a string of bits {bk : k = 0, 1, . . . , N} is mapped to sequence
of pulses as in Equation (3.3) where each pulse is of duration T and is given by

pk(t) =

{

Ac sin(2πf1t) if bk = 0
Ac sin(2πf2t) if bk = 1

(3.5)

for t ∈ [0, T].

Phase Shift Keying

A modulation scheme which modifies the phase of the carrier wave according to the digital
information to be sent is called phase shift keying (PSK) scheme. For example, a binary PSK
(BPSK) scheme maps the bit 0 to a sinusoidal signal whose phase is shifted by π and a bit 1 to a
sinusoidal signal with no phase shift. As before, a string of bits {bk : k = 0, 1, . . . , N} is mapped
to sequence of pulses as in Equation (3.3) where each pulse is of duration T and is given by

pk(t) =

{

Ac sin(2πfct+ π) if bk = 0
Ac sin(2πfct) if bk = 1

(3.6)

for t ∈ [0, T].

Quadrature Modulation

The modulation schemes just described can transmit only one bit per pulse duration T . The
orthogonality of the sine and cosine waves can be exploited to increase the number of bits trans-
mitted per pulse duration resulting in schemes called M-ary phase shift keying and quadrature
amplitude modulation (QAM). The general form of the transmitted signals under these schemes
is given by

s(t) = A cos(2πfct) +B sin(2πfct) (3.7)

where A and B take discrete values depending on the bits to be transmitted. Constraining the
sum of A2 and B2 to unity results in M-ary PSK signals. For example, when A and B take

values from the set
{

+ 1√
2
,− 1√

2

}

, we obtain the modulation scheme known as quadrature phase

shift keying (QPSK).

Orthogonal Frequency-Division Modulation

Orthogonal frequency-division multiplexing (OFDM) is an example of a multi-carrier modulation
technique. In multi-carrier modulation, the data is simultaneously modulated onto multiple sub-
carriers using a modulation technique like QAM or PSK. The advantage of doing this is that the
data can be recovered even if some of the sub-carriers are subjected to severe attenuation. In
OFDM, the sub-carriers are chosen to be orthogonal and the data to be transmitted is divided
into parallel data streams where each stream modulates one sub-carrier. For example, an OFDM

23

signal having N sub-carriers each modulated by BPSK over a single symbol duration T is given
by

s(t) =
N−1
∑

k=0

bk sin

(

2π

[

fc +
k

T

]

t

)

(3.8)

where t ∈ [0, T] and bk ∈ {−1,+1}. The sub-carrier spacing of 1
T

makes them orthogonal over
each symbol period.

Demodulation of Narrowband Signals

The demodulation of modulated sinusoidal signals requires knowledge of the carrier frequency,
carrier phase and the symbol timing of the received signal. Even though the receiver knows the
value of the transmitted carrier frequency and tunes its local oscillator to match this frequency,
there might be a mismatch between the received frequency and the local oscillator’s frequency.
This mismatch is due to deviation of the oscillators at the transmitter and receiver from the
actual frequency or due to Doppler effect when the transmitter is moving relative to the receiver.
The carrier phase of the received signal is the sum of the random phase of transmitter’s oscil-
lator relative to the receiver’s oscillator, the channel phase response and the phase due to the
transmission delay. The symbol timing, i.e. the boundaries of the symbols in the received signal,
is not known because of the transmission delay and the mismatch between the transmitter and
receiver clocks. For example, a BPSK pulse of the form

s(t) = akp(t) sin(2πfct), (3.9)

where p(t) is a baseband pulse which is non-zero in the interval [0, T] and

ak =

{

+1 if bit is 1
−1 if bit is 0

(3.10)

when passed through a non-dispersive channel, yields a received signal of the form

r(t) = Aakp(t− τ) sin [2π(fc + fd)(t− τ) + θ)] + n(t), (3.11)

where A is the received amplitude, fd is the Doppler shift, θ is the received carrier phase, τ is
the transmission delay and n(t) is a noise process. Defining φ = θ − 2π(fc + fd)τ , we can write
the received signal as

r(t) = Aakp(t− τ) sin [2π(fc + fd)t+ φ)] + n(t), (3.12)

If the receiver knows fd, φ and τ , the value of ak can be recovered by correlation with p(t −
τ) sin [2π(fc + fd)t+ φ] followed by low-pass filtering. This is an example of a coherent demod-
ulation scheme which is any demodulation scheme which requires knowledge of the carrier phase
φ. There are also noncoherent demodulation schemes which achieve demodulation without the
knowledge of the carrier phase.

The estimation of the carrier frequency is called carrier synchronization or carrier recovery. The
estimation of the carrier phase is called carrier phase synchronization and is performed using
a phase-locked loop (PLL) circuit. The estimation of the symbol timing is called symbol timing
synchronization and is performed using a DLL circuit as in the baseband channel case.

In summary, all the physical layer issues of baseband channels carry over to narrowband channels
with the addition of the issues of carrier phase and frequency estimation. ISI is an issue even
in narrowband channels (even though we did not mention it) and requires pulse-shaping or
equalization to mitigate it. In addition to channel estimation and initial timing estimation, the
preamble also helps in carrier recovery and phase synchronization in narrowband channels.

24

3.3 Spread Spectrum Communication

The term spread spectrum modulation refers to modulation techniques which result in a trans-
mitted signal bandwidth which is much wider than the minimum bandwidth required for com-
munication. For example, a spread spectrum technique could use a signal having bandwidth
1 MHz to communicate information which can be communicated using narrowband techniques
using a signal having bandwidth 5 kHz. Spread spectrum modulation techniques are used in the
physical layer of many wireless commercial and military communication networks like 802.11,
GPS and CDMA2000. The advantages of spread spectrum techniques include resistance to jam-
ming and interference, low probability of interception, resistance to fading and suitability for
ranging applications. But the main reason for their popularity lies in their inherent ability to
provide shared channel access in multiple access channels in a decentralized manner.

The main principle behind spread spectrum’s ability to enable multiple access can be explained
by considering two sources (S1 and S2) who want to transmit a single bit each over a multiple
access channel to a single destinations D. Suppose they use amplitude modulation and Si

(i = 1, 2) transmits the following signal

ui(t) = aivi(t) (3.13)

where ai ∈ {−1,+1}. The signals vi(t) have the property that they are approximately orthogonal
irrespective of the relative time-shift between them, i.e. they satisfy the following property

∫ ∞

−∞
v1(t)v2(t− τ) dt ≈ 0 (3.14)

for all values of τ . The received signal at the destination D is given by

r(t) = A1u1(t− τ1) +A2u2(t− τ2) (3.15)

= A1a1v1(t− τ1) +A2a2v2(t− τ2) (3.16)

where Ai (i = 1, 2) and τi (i = 1, 2) represent the attenuation and transmission delay of Si’s
signal, respectively. We have neglected the noise term in the received signal for convenience. If
the destination now estimates τ1 and correlates the received signal with v1(t− τ1), it can obtain
the value of a1 as shown below.

∫ ∞

−∞
r(t)v1(t− τ1) dt = a1A1

∫ ∞

−∞
v2
1(t− τ1) dt+ a2A2

∫ ∞

−∞
v2(t− τ2)v1(t− τ1) dt

≈ a1A1 (3.17)

Similarly, the value of a2 can be obtained by estimating τ2 and correlating the received signal with
v2(t−τ2). Thus we are able to recover the values of the ai’s and consequently the information bit
each source wants to communicate even though the transmitted signals overlap at the receiver.
The approximate orthogonality property of the transmitted signals shown in Equation (3.14)
is crucial for this to be possible. The signals used in spread spectrum modulation are able to
provide this property at the cost of occupying a wide bandwidth.

There are three main categories of spread spectrum techniques - direct sequence (DS), frequency
hop (FH) and time hop (TH). Hybrid spread spectrum techniques also exist which are a combi-
nation of these basic techniques. The main idea is to introduce high rate variations in the signal
used to transmit the information resulting in a signal which occupies a larger bandwidth.

25

Direct Sequence Spread Spectrum

In direct sequence spread spectrum (DSSS), the bandwidth occupied by a PSK signal is in-
creased by multiplying it with high rate pseudo-random sequence of phase modulated pulses.
For example, consider a BPSK signal given by

m(t) =
√

2P
∞
∑

k=−∞
bkp(t− kT)sin(2πfct), (3.18)

where bk ∈ {−1,+1} and p(t) is a pulse of duration T . We multiply the data m(t) with a
spreading signal given by

a(t) =
∞
∑

l=−∞
alψ(t− lTc), (3.19)

where al ∈ {−1,+1} is a pseudo-random sequence called the spreading sequence, ψ(t) is a pulse
of duration Tc called the chip waveform. The value of Tc is chosen such that T = NTc for some
positive integer N > 1. Then the spread spectrum signal is given by

s(t) = m(t)a(t) =
√

2P
∞
∑

l=−∞
b⌊ l

N
⌋alψ(t− lTc) sin(2πfct) (3.20)

where ⌊x⌋ is the largest integer less than or equal to x. This is illustrated in Figure ??. The
bandwidth expansion can be seen by looking at the power spectrum of the spread spectrum
signal which for the case when ψ(t) is a rectangular pulse is given by

Φs(f) =
PTc

2

[

sin2 [π(f − fc)Tc]

[π(f − fc)Tc]
2 +

sin2 [π(f + fc)Tc]

[π(f + fc)Tc]
2

]

(3.21)

which is basically the sum of two frequency-shifted squared sinc functions. The main lobes of
the squared sinc functions in this power spectrum are N times wider than the main lobes in the
power spectrum of m(t) which for the case when p(t) is a rectangular pulse is given by

Φm(f) =
PT

2

[

sin2 [π(f − fc)T]

[π(f − fc)T]2
+

sin2 [π(f + fc)T]

[π(f + fc)T]2

]

(3.22)

The approximately orthogonal property is obtained by using different spreading signals a(t) for
different users.

The main disadvantage of using DSSS signals is that the timing synchronization needs to be
more accurate. It has to be correct to the order of a chip duration Tc while in narrow band
signals the timing had to correct to the order of the bit duration T .

Frequency Hop Spread Spectrum

In frequency hop spread spectrum (FHSS), the bandwidth of a narrowband signal is increased
by pseudo-randomly choosing the carrier frequency from a discrete set of carrier frequencies.
Consider a binary FSK signal given by

m(t) =
√

2P
∞
∑

k=−∞
pT (t− kT)sin [2π(fc + fk)t] , (3.23)

26

where fk ∈ {f1, f2}, fc is the carrier frequency and pT (t) is a pulse of duration T . Consider a
pseudo-random sequence of carrier frequencies {f l

c} where each value in the sequence is picked
from a discrete set of frequencies {fc,1, fc,2, . . . , fc,M}. The narrowband signal m(t) is spread
to a wider bandwidth by changing its carrier frequency every Tc seconds to the next value in
the sequence {f l

c} which is called the frequency hopping code. This process is called frequency
hopping and for T = NTc the resulting signal is given by

s(t) =
√

2P
∞
∑

l=−∞
pTc(t− lTc)sin

[

2π(f l
c + f⌊ l

N
⌋)t

]

. (3.24)

This example is in fact illustrating fast hopping where the hopping rate (1
Tc

) is larger than the

symbol rate (1
T

). When the symbol rate is larger than the hopping rate, the situation is called
slow hopping.

The main challenge in using FHSS is synchronizing the receiver with the transmitter’s frequency
hopping code.

Time Hop Spread Spectrum

In time hop spread spectrum (THSS), the bandwidth of a narrowband signal is increased by
pseudo-randomly changing the position of the pulses present in the signal. For example, consider
a BPSK signal given by

m(t) =
√

2P
∞
∑

k=−∞
bkpT (t− kT)sin(2πfct), (3.25)

where bk ∈ {−1,+1} and pT (t) is a pulse of duration T . We multiply the data m(t) with a
spreading signal given by

a(t) =

√

T

Tc

∞
∑

l=−∞
pTc(t− lT − alTc), (3.26)

where al ∈ {0, 1, . . . , N − 1} is a pseudo-random sequence called the time hopping code and
pTc(t) is a pulse of duration Tc. As before, the value of Tc is chosen such that T = NTc for some
positive integer N > 1. Then the spread spectrum signal is given by

s(t) = m(t)a(t) =

√

2PT

Tc

∞
∑

l=−∞
blpTc(t− lT − alTc) sin(2πfct). (3.27)

It can be shown that this signal occupies N times the bandwidth occupied by m(t).

The main challenge in using THSS is synchronizing the receiver with the transmitter’s time
hopping code.

27

Chapter 4

Data Link Layer

The data link layer is concerned with providing error-free communication between adjacent
nodes in a communication network. To be more specific, its goal is to transfer information bits
from the network layer on a source node to the network layer on an adjacent destination node.
The main functions of the data link layer are the following.

• Framing: The data link layer breaks up the information bit strings passed on from the
network layer into smaller bit strings and encapsulates them into frames. This framing of
the information enables the next three functions of the data link layer possible.

• Error control: Since the combination of the physical channel between adjacent nodes and
the physical layers in the nodes behaves like an unreliable bit pipe, the data link layer is
responsible for converting this into an error-free bit pipe.

• Flow control: The data link layer regulates the flow of data between adjacent nodes such
that buffer overflows do not occur.

• Medium access control: When the channel between adjacent nodes is a multiple access
channel, a sublayer of the data link layer called the MAC layer coordinates the channel
access.

4.1 Framing

The network layer at a node passes information bit strings called packets to the data link layer
to transfer to the adajcent node along the way to the final destination node. The data link layer
breaks every packet into smaller bit strings and encapsulates them into frames. If the packets
are small enough, breaking of the packets may not be necessary and encapsulation may be
sufficient. Each frame consists of a header preceding the information bits and a trailer following
the information bits. The information bit string between the header and trailer is sometimes
referred to as the payload but this terminology is not restricted to the data link layer. The
whole frame is then passed on to the physical layer for transmission over the physical channel.
This is illustrated in Figure 4.1. The framing operation allows the data link layer to provide the
error control, flow control and medium access control capabilities. For instance, the CRC bits
which are used for error detection are typically stored in the trailer appended by the data link

28

Network
Layer

Data Link
Layer

Physical
Layer

Packet

Header Payload Trailer

Transmitted Signal Channel Received Signal

Header Payload Trailer

Packet
Network
Layer

Data Link
Layer

Physical
Layer

Frame Frame

Sending Node Receiving Node

Figure 4.1: Illustration of framing at the data link layer

layer. The header contains the destination MAC address which is used to identify the intended
receiver of the packet when the channel is a multiple access channel.

The data link layer on the receiving node is provided a sequence of bits from the physical layer.
Determining where the frames begin and end is the main challenge faced by the receiving data
link layer. It needs to identify the header and trailer before it can do subsequent processing.
Identifying the header is easy since it appears in the beginning of a frame. Identifying the
trailer is more challenging because the length of the payload may be variable. One way to solve
this problem is to include the length of the payload in the frame header. This is illustrated in
Figure 4.2a. The problem with this approach is that an error in the length field can cause some
other bits to be interpreted as the CRC bits. For example, suppose the original length was 1000
and a channel error caused the length to be interpreted as 500. Then some bits in the middle of
the data portion will be taken to be the CRC bits resulting in an error detection being declared
by the receiver with high probability. Such a length error can not only affect the current frame
but also the subsequent frames even if they are error-free.

An alternative framing strategy involves delimiting the frame with special bytes called flag
bytes. This is illustrated in Figure 4.2b. The data link layer on the receiving node parses the
bit sequence provided by the physical layer for the flag bytes and takes the bits between two
consecutive flag bytes to be the frame. Of course, if the flag bytes are corrupted by channel errors
the frame cannot be correctly identified. Even if there are no channel errors the appearance of
the flag byte in the payload can cause the frame boundaries to be erroneously identified. The
solution to this problem is to insert a special escape byte (ESC) before the flag byte in the
payload to distinguish it from a flag byte at the frame boundary. This is called byte stuffing.
Whenever the receiver sees an escape byte followed by the flag byte it will infer that the flag byte
appeared in the payload and not at the end of a frame. It will then simply remove or destuff the
escape byte before passing the payload bits to the network layer. This scheme will work as it is
if the escape byte is inserted only before a flag byte. An escape byte which is not followed by a

Header Length Payload CRC

(a) Framing using payload length

FLAG Header Payload CRC FLAG

(b) Framing using flag delimiters

Figure 4.2: Illustration of different framing strategies

29

Payload bytes After byte stuffing After byte destuffing

0xAB FLAG 0xCD 0xAB ESC FLAG 0xCD 0xAB FLAG 0xCD

0xAB ESC 0xCD 0xAB ESC ESC 0xCD 0xAB ESC 0xCD

0xAB ESC FLAG 0xCD 0xAB ESC ESC ESC FLAG 0xCD 0xAB ESC FLAG 0xCD

Table 4.1: Illustration of byte stuffing and destuffing

flag byte is not destuffed. However, in most data link layer protocols, the escape byte is inserted
before other control bytes as well. Then the receiver has to check if the escape byte is followed
by any one of the control bytes before destuffing it. This can be a time-consuming operation if
the number of possible control bytes is large. A simpler strategy is to insert another escape byte
before the appearance of every escape byte in the payload at the sending data link layer. At the
receiving data link layer, every pair of escape bytes is destuffed to a single escape byte and an
escape byte followed by a flag byte is destuffed to a flag byte. This is illustrated in Table 4.1
where FLAG denotes the flag byte, ESC denotes the escape byte and the other payload bytes
are given in hexadecimal notation.

Another approach to framing involves bit stuffing instead of byte stuffing. As before the start
and end of a frame is indicated by a flag byte which in this case is chosen to be the byte 01111110.
To deal with the issue of the flag byte appearing in the payload, the sending data link layer
inserts a 0 bit whenever it encounters five consecutive 1s in the payload. This is illustrated in
Figure 4.3.

In reality, many data link layer protocols use the payload length and the flag delimiters together
to achieve framing. This has the advantage of more robustness against channel errors. The
payload length is used to calculate the end of the frame and the presence of a flag at that
position is checked. If the the expected flag is absent either due to channel errors corrupting
the length field or the flag itself, the frame is discarded as erroneous.

4.2 Error Control

The most crucial function of the data link layer is to convert the unreliable bit pipe provided
by the physical layer into a error-free bit pipe. This is achieved using the combination of an
error-detecting code like cyclic redundancy check (CRC) and automatic repeat request (ARQ).
Although CRC is just one type of error-detecting code, it is the most prevalent one in usage
today and hence it has become synonymous with error detection in networking literature. ARQ
uses a combination of timeouts and acknowledgements to ensure frame retransmissions when
frame errors are detected by the CRC.

In the introductory chapter, we mentioned forward error correction (FEC) as another method

Payload bits 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0

After bit stuffing 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 0

After destuffing 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0

Figure 4.3: Illustration of bit stuffing where the underlined bits are introduced by the bit stuffing
operation

30

for enabling error-free communication which uses redundancy to correct errors. We observed
that CRC was essential for ARQ to work correctly but FEC was not. We also looked at the
repetition code as the simplest FEC scheme. In this course, we will not go into the details of
more complicated FEC schemes as that will require a lot more time than what can be afforded for
such a topic which can span a whole course on its own. A final remark is due, however, regarding
which layer FEC schemes belong to. Although they should naturally belong to the data link
layer since they help provide error-free communication between adjacent nodes, they are usually
implemented as part of the physical layer. For instance, most physical layer specifications of
current wireless standards like 802.11 and WiMAX include the description of the particular
FEC scheme which can be used. One reason for this is that the physical layer algorithms
are implemented in hardware.The FEC encoding/decoding operations can be computationally
intensive and can be performed faster in hardware. Another reason is that soft-decision decoding
algorithms for FEC schemes which take into account the received signal values have better
performance than hard-decision decoding algorithms. The received signal values are available
only at the physical layer.

4.2.1 Cyclic Redundancy Check

The basic principle behind an error detection code is to append a fixed number of check bits
to the payload at the sender which are a deterministic function of the payload bits. At the
receiver, the check bits are recalculated using the same deterministic function acting on the
received payload bits and compared to the received check bits. The deterministic function is
chosen such that errors in the decoder output will cause a discrepancy between the recalculated
check bits and the decoded check bits. When a discrepancy arises, an error is detected. The
check bits are also called the checksum of the payload. This terminology is a result of the fact
that the earliest error detection codes just performed a binary summation of the bytes in the
payload to generate the check bits.

The number of check bits is much less than the number of payload bits and hence multiple
payload bit strings will map to the same checksum. So there is a possibility of channel errors
going undetected when they transform the actual payload bits to another payload bit string
which yields the same check bits. To alleviate this problem, the error detection code is chosen
such that a number of errors less than a fixed value cannot result in a valid payload-checksum
pair.

Binary Polynomials

The study of CRC is greatly simplified if we represent bit strings using binary polynomials, i.e.
polynomials with coefficients which are either 0 or 1. For example, the bit string 101 is mapped
to X2+1. In general, the one-to-one correspondence between n-length bit strings to polynomials
of maximum degree n− 1 is given by the following.

bn−1bn−2 · · · b2b1b0 ←→ bn−1X
n−1 + bn−2X

n−2 + · · ·+ b2X
2 + b1X + b0 (4.1)

Here are some more examples for the case n = 8.

00000000 ←→ 0

00001000 ←→ X3

10101010 ←→ X7 +X5 +X3 +X

11111111 ←→ X7 +X6 +X5 +X4 +X3 +X2 +X + 1

31

If bn−1 = 1, the degree of the corresponding binary polynomial is n−1 and the degree is less than
n − 1 if bn−1 = 0. We will need to perform the arithmetic operations of addition, subtraction,
multiplication and division on these polynomials.

Addition of binary polynomials is similar to addition of polynomials with real or complex coef-
ficients except that the coefficients obey the rules of binary arithmetic, i.e. 0 + 0 = 0 − 0 = 0,
1 + 1 = 1− 1 = 0, 1 + 0 = 0 + 1 = 1− 0 = 1, 0− 1 = 1. For example,

(

X3 +X + 1
)

+
(

X2 +X + 1
)

= X3 +X2 + (1 + 1)X + 1 + 1 = X3 +X2.

Also,
(

X3 +X + 1
)

+
(

X3 +X + 1
)

= (1 + 1)X3 + (1 + 1)X + 1 + 1 = 0.

The addition of a binary polynomial with itself always gives zero. Thus, a binary polynomial is
its own additive inverse, i.e. b(X) = −b(X) for all binary polynomials b(X). This also means
that addition of two binary polynomials is the same as subtracting the one from the other, i.e.

a(X) + b(X) = a(X)− b(X) = −a(X) + b(X) = −a(X)− b(X),

for all binary polynomials a(X) and b(X).

Similarly, multiplication of binary polynomials is similar to the multiplication of polynomials
with real or complex coefficients except that the coefficients obey the rules of binary arithmetic.
For example,

(X + 1)
(

X3 +X + 1
)

= X
(

X3 +X + 1
)

+
(

X3 +X + 1
)

= X4 +X2 +X +X3 +X + 1 = X4 +X3 +X2 + 1.

Note that multiplying a polynomial by X shifts the corresponding bit string one position to the
left. For example, when n = 8

X3 +X + 1 ←→ 00001011

X
(

X3 +X + 1
)

= X4 +X2 +X ←→ 00010110.

One interesting fact is that the square of a binary polynomial is equal to the sum of the squares
of the individual terms.

(

X3 +X + 1
)2

= X6 +X2 + 1 +X3 ·X +X ·X3 +X3 · 1 + 1 ·X3 +X · 1 + 1 ·X
= X6 +X2 + 1.

This property actually holds for any 2i-power of a polynomial.

Division of binary polynomials is also similarly related to the division of ploynomials with real
coefficients. An example is as follows.

X3 − 1

X5 +X2 + 1) X8

−X8 −X5 −X3

−X5 −X3

X5 +X2 + 1

−X3 +X2 + 1

(4.2)

Of course, a −1 is equivalent to a 1.

32

CRC Error Detection

Suppose we have an n-bit information bit string (mn−1,mn−2, . . . ,m2,m1,m0). The correspond-
ing binary polynomial is

m(X) = mn−1X
n−1 +mn−2X

n−2 + · · · +m1X +m0.

Suppose we append the check bit string (ck−1, ck−2, . . . , c2, c1, c0) to the information bit string.
Let the polynomial corresponding to the check bits be

c(X) = ck−1X
k−1 + ck−2X

k−2 + · · ·+ c1X + c0.

Then the transmitted bit string will be (mn−1,mn−1, . . . ,m1,m0, ck−1, ck−2, . . . , c1, c0) which
corresponds to the binary polynomial

s(X) = m(X)Xk + c(X). (4.3)

Remember that multiplication of a polynomial by Xk will cause the corresponding bit string to
shift to the left by k positions. Thus Equation (4.3) corresponds to the shifting the message bits
to the left to make room for the check bits and inserting the check bits in the vacated positions.

When CRC is used to generate the check bits, c(X) is called the CRC polynomial. The CRC
polynomial c(X) is a function of the information polynomial m(X), defined in terms of a gen-
erator polynomial of degree k,

g(X) = Xk + gk−1X
k−1 + gk−2X

k−2 + · · ·+ g2X
2 + g1X + 1 (4.4)

as follows

c(X) = Remainder

[

m(X)Xk

g(X)

]

.

So the CRC polynomial is the remainder from dividing the left-shifted information polynomial
m(X)Xk by the generator polynomial g(X). Notice that we have defined the generator poly-
nomial such that the terms with degree k and 0 (the first and the last terms) cannot have a
non-zero coefficient. Let q(X) be the quotient resulting from dividing m(X)Xk by g(X). Then
we have

m(X)Xk = q(X)g(X) + c(X)

⇒ m(X)Xk + c(X) = q(X)g(X)

But the left-hand side of the second equation is just s(X) from Equation (4.3) which is the
binary polynomial corresponding to the transmitted bit string. This is true for any m(X) and
so all the transmitted bit strings are multiples of the generator polynomial (here we are using the
bit string to mean the corresponding polynomial for brevity). Also, every transmitted bit string
is divisible by the generator polynomial. So if there are no errors introduced by the channel,
the received bit string must also be divisible by the generator polynomial. Thus, if r(X) is the
received bit string the error detection procedure is the following.

If Remainder

[

r(X)

g(X)

]

6= 0,declare error detection. (4.5)

If s(X) and r(X) represent the transmitted and received bit strings respectively. Then r(X) =
s(X) + e(X) where e(X) represents the bit string which has 1s in the error locations, i.e. the

33

positions where s(X) and r(X) differ. For example, let 1001 be the transmitted bit string
represented by s(X) = X3 + 1 and 1011 be the received bit string represented by r(X) =
X3 +X + 1. Then e(X) = X which represents the error bit string 0010.

Remainder

[

r(X)

g(X)

]

= Remainder

[

s(X) + e(X)

g(X)

]

= Remainder

[

e(X)

g(X)

]

(4.6)

From Equations (4.5) and (4.6), we see that an error will be detected if e(X) is not divisible
by g(X). If there are no errors introduced by the channel, e(X) = 0 and the remainder after
division by g(X) will be zero. If e(X) 6= 0, errors will go undetected only if the remainder is
zero. This happens only if

e(X) = g(X)z(X) (4.7)

for some non-zero polynomial z(X).

Suppose a single bit error occurs. Then e(X) = X l where 0 ≤ l ≤ deg[s(X)]. Since we chose
the generator polynomial such that the highest and lowest order terms are non-zero (Xk and
1, see Equation (4.4)), g(X)z(X) must also have at least two non-zero terms. Let z(X) be a
non-zero polynomial with highest and lowest order terms of degree i and j, respectively. Then
z(X) = Xi + zi−1X

i−1 + · · · +Xj . If z(X) has only one term, then i = j. Now g(X)z(X) will
have at least the two non-zero terms Xk+i and Xj and hence

X l 6= g(X)z(X)

for any z(X). Thus the remainder of dividing X l by g(X) will never be zero and hence all single
errors are detected.

Suppose a double error occurs. Then e(X) = Xi +Xj = Xj(Xi−j + 1) where i > j. Now Xj is
not divisible by g(X) by our previous argument about single errors. So for e(X) to be a multiple
of g(X), Xi−j + 1 should be a multiple of g(X). In other words, g(X) should divide Xi−j + 1
for e(X) to be an undetectable error pattern. If g(X) is chosen to be a primitive polynomial of
degree k, then the smallest value of m for which g(X) divides Xm + 1 is 2k − 1. So if g(X) is
chosen to be a primitive polynomial of degree k and the transmitted bit string length is chosen to
be at most 2k−1, then Xi−j +1 cannot be divisible by g(X). This is because if the transmitted
bit string is of length at most 2k − 1, then 0 ≤ i, j ≤ 2k − 2 and hence i − j ≤ 2k − 2. This
proves that all double errors are detected.

Let us now consider the detection of burst errors. Any possible error pattern can be characterized
as a burst error. The burst length of a burst error is defined as the number of positions from
the first error to the last error including the endpoints. For example, the error pattern 0010010
has burst length 4. In the corresponding error polynomial e(X) = X4 + X, the highest and
lowest order terms differ in degree by 3. Since the highest and lowest order terms in g(X)
differ in degree by k, by Equation (4.7) the highest and lowest order terms in any undetectable
error polynomial e(X) also differ by at least k. Hence the burst length of an undetectable error
pattern is at least k+1. The lower bound of k+1 on an undetectable error burst length implies
that all error patterns with burst length less than k + 1 will be detected.

Suppose a burst error of length k+1 occurs. It will be of the form e(X) = Xi(Xk +ek−1X
k−1 +

· · ·+ e2X
2 + e1X + 1), where 0 ≤ i ≤ n− 1 . For each i, there are 2k−1 possible error patterns.

Of these, only one is undetectable, namely Xig(X). Thus the fraction of undetectable error
patterns of burst length k + 1 is 2−(k−1).

If the burst length l is greater than k+ 1, there are 2l−2 such error patterns starting at position
l and ending at position i+ l − 1. Of these, the undetectable error patterns will be of the form

34

Xia(X)g(X) where a(X) = X l−k−1 +al−k−2X
l−k−2 + · · ·+a1X+1. For each i, there are 2l−k−2

such undetectable error patterns. Thus the fraction of undetectable error patterns of length
l > k + 1 is 2−k.

In practice, the generator polynomial is chosen to be the product of a primitive polynomial of
degree k − 1 and the polynomial X + 1. A polynomial e(X) is divisible by X + 1 if and only
if it contains an even number of non-zero coefficients. This ensures that all error patterns with
odd number of errors in the transmitted bit string are detected. Additionally, the primitive
polynomial detects all single errors and all double errors as long as the transmitted bit string
length is less than 2k−1. So the CRC corresponding to this generator polynomial can detect
upto 3 errors in any arbitrary locations. It can also detect all burst errors of length at most k
and many of the burst errors of length greater than k.

For the CRC-16 code given by the generator polynomial g(X) = X16 +X15 +X2 + 1 = (X +
1)(X15 +X+1), the smallest integer m for which g(X) divides Xm +1 is 215−1 = 32, 767. So if
the transmitted bit string length is at most 32,767, the CRC-16 polynomial can detect all single,
double, triple and odd numbers of errors. It can also detect all burst errors of length 16 or less,
99.997% of 17-bit error bursts, and 99.998% of 18-bit or longer error bursts. The CRC-32 code
given by the generator polynomial

g(X) = X32+X26+X23+X22+X16+X12+X11+X10+X8+X7+X5+X4+X2+X+1 (4.8)

is used in Ethernet for its superior burst-error detecting capability.

4.2.2 Automatic Repeat Request

The basic principle behind automatic repeat request (ARQ) is to initiate frame retransmissions
when errors are detected in the received frame. The CRC scheme discussed in the previous
section is used to detect errors. Retransmissions are initiated using a combination of timeouts
and acknowledgements. There are three basic types of ARQ protocols: stop-and-wait ARQ,
go-back-N ARQ and selective repeat ARQ.

Stop-and-wait ARQ

Stop-and-wait ARQ (SW ARQ) is the simplest ARQ protocol. The basic idea is to ensure
that a frame has been received correctly before initiating the transmission of the next frame.
When a source node sends a frame, it starts a timer and waits for an acknowledgement (ACK)
from the destination.If the destination node receives a frame in which no errors are detected,
it sends an ACK frame back to the sender informing it of error-free frame reception. Once an
ACK for a frame arrives at the source, the next frame is transmitted. This is illustrated in
Figure 4.4a. If errors are detected in the frame, then the destination does nothing. If the timer
at the source exceeds a predetermined threshold, a timeout event is declared and the frame is
resent. This is illustrated in Figure 4.4b. Thus the frame is retransmitted until it is received
correctly at the destination. Note that the ACK frame can also be affected by errors and hence is
protected by a CRC scheme. If errors are detected in the ACK frame, it is ignored. Thus frames
sent from the source to the destination can be retransmitted even if they are received correctly
at the destination because the corresponding ACK frame was corrupted. This is illustrated
in Figure 4.4c. Frame retransmission can occur even in the case of an error-free channel due
to early timeouts. If the timeout period is chosen to be too small, the timeout event occurs

35

Source

Destination

F
ram

e A
C

K

N
ex

t
F
ram

e

Timeout

(a) The ideal case: ACK is received be-
fore timeout occurs

Source

Destination

F
ram

e

Timeout

F
ram

e

A
C

K

Timeout

(b) Error case: Frame errors are detected

Source

Destination

F
ram

e A
C

K

Timeout

F
ram

e

A
C

K

Timeout

(c) Error case: ACK errors are detected

Source

Destination

F
ram

e A
C
K

Timeout

F
ram

e

A
C
K

Timeout

(d) Error case: Two copies of frame are accepted
due to early timeout

Figure 4.4: Timing diagrams illustrating stop-and-wait ARQ operation

before the ACK can reach the source and a frame retransmission occurs. This is illustrated in
Figure 4.4d. To avoid unnecessary frame retransmissions, the timeout period should be chosen
such that it is at least as large as a round-trip time (RTT). The RTT is defined as the time
taken to transmit a frame and receive an acknowledgement when no errors are introduced by
the channel, i.e. the case illustrated in Figure 4.4a. The round-trip time is given by

Round-trip time = Propagation delays + Transmit duration + Processing delays (4.9)

The propagation delay in direction, say from source to destination, is given by τ = d
c

where d is
the distance between the nodes and c is the speed of light in the medium connecting them. So
the round-trip propagation delay is 2τ . The transmit duration of the frame is given by Tf =

Lf

D

where Lf is the length of the frame in bits and D is the data rate in bits per second. The
transmit duration of the ACK is given by Ta = La

D
where La is the length of the ACK in bits.

The total transmit duration is then given by Tf + Ta. The processing delay Tp is the delay
between the reception of the frame at the destination and the start of the ACK transmission.
The timeout should be chosen to be at least as large as Tf + Ta + Tp + 2τ to avoid unnecessary
retransmissions. However, the processing delay typically cannot be predicted in advance since
it may include the queueing delay for the frame, i.e. the frame may be received and be kept
waiting in the receive queue before it is processed.

In the cases illustrated in Figures 4.4c and 4.4d, the data link layer at the destination accepts
two copies of a frame and passes it along to the network layer since both copies are error-free.
Comparing consecutive frames to detect duplicates is not a good strategy because the source
may sometimes send some information which can result in consecutive frames having the same
information. The simplest solution is to include a sequence number for the frame in the frame
header which can be used to detect and reject duplicate frames. This is illustrated in Figure 4.5a
where the numbers at the beginning of a frame transmission indicates the sequence number of
the frame. Even if sequence numbers are used in the frames, delayed ACKs and corrupted
frames can cause the wrong frames to be acknowledged. This is illustrated in Figure 4.5b where

36

Source

Destination

F
ram

e A
C

K

F
ram

e

A
C

K

F
ram

e

A
C

K

0 1 2

(a) Error-free case with increasing sequence num-
bers

Source

Destination

Timeout

0 0 1 2

(b) Error case: No sequence numbers in the ACKs

Source

Destination

Timeout

0 0 1 1

1 1 2

(c) Sequence numbers present in the ACKs

Source

Destination

F
ram

e A
C

K

F
ram

e

A
C

K

F
ram

e

A
C

K

0 1 0

1 0 1

(d) One-bit sequence numbers

Figure 4.5: Sequence numbers to distinguish duplicate frames

a delayed ACK for the frame 0 has been incorrectly accepted as an ACK for the retransmission
of frame 0 and the ACK for the retransmission has been accepted as the ACK for frame 1. Even
if frame 1 is corrupted by errors, frame 2 will be transmitted by the source. The solution is to
return the sequence number of the next frame expected by the destination in the ACK for a
correctly received frame. This is illustrated in Figure 4.5c where the numbers at beginning of an
ACK transmission indicate the sequence number of the next frame expected by the destination.
Of course, the destination could include the sequence number of the currently acknowledged
frame in the ACK but this is not done to conform with the other ARQ protocols where sending
the sequence number of the next expected frame has a definite advantage.

Sequence numbers are embedded in the frame header and hence it is desirable to limit the range
of values they can take so as to minimize the number of bits which need to be reserved for them
in the header. At any moment, the ambiguity is between frame m and frame m + 1. At the
destination, a copy of frame m is received due to an early timeout or due to the corruption of
the ACK for frame m. Similarly, the source needs to distinguish between the ACKs for frames
m and m + 1. Hence a one-bit sequence number (0 or 1) is sufficient. The sequence number
alternates between 0 and 1 for successive frames. This is illustrated in Figure 4.5d.

On half-duplex links, one cannot do better than SW ARQ. However, on full-duplex links, SW
ARQ can result in poor link utilization because it allows the source to have only one outstanding
frame at a time. For example, consider a full-duplex link with data rate 500 kbps with a
propagation delay of 25 ms. Suppose the source is sending frames of length 1000 bits and
ACKs have length 100 bits. If the source starts sending a frame at t = 0s, the frame has been
completely transmitted by the source at t = 2 ms and the frame has been received completely
at the destination at t = 27 ms. Let us assume that there are no errors in the frame and the
processing delay is negligible. At t = 27.2 ms, the ACK has completely transmitted by the
destination and at t = 52.2 ms the ACK has been completely received by the source. So the

37

Source

Destination

Timeout

1 2 3 4 5 6 3 4 5 6 7 8 9 10 11

2 3 E D D D 4 5 6 7 8 9 10 11

Figure 4.6: Illustration of go-back-N ARQ with N = 4

link from the source to the destination was idle for a fraction equal to 50.2
52.2 or 96% of the time.

A solution is to send N frames before waiting for ACKs. In the previous example, N should
be at least 27. Once the 27th frame has been transmitted by the source t will be 54 s and the
ACK for the first frame would have arrived in the error-free case. To deal with the case when
frame errors occur, the value of N should be chosen such that NTf > Tt where Tf is the frame
transmission time and Tt is the timeout duration. Then by the time N frame transmissions
have completed, ACKs for the first few frames have arrived or a timeout for the first frame has
occurred. In the former case, the source can start sending frame N + 1 and in the latter case it
can start retransmission of frame 1.

Go-back-N ARQ

In go-back-N ARQ (GBN ARQ), the source sends N frames and then checks if the ACKs
have arrived for the first few frames it sent. If the ACKs have arrived for frames 1 through k
(1 ≤ k ≤ N), it sends frames N +1 through N +k. Thus the number of unacknowledged frames
at any time is N . The destination accepts frames as long as they arrive without errors. If the
destination receives an erroneous frame (say frame i), it begins to reject or drop all subsequent
out-of-sequence (sequence number > i) error-free frames without even sending an ACK until a
error-free copy of frame i arrives. But if the out-of-sequence frame has sequence number less than
the sequence number of the next expected frame (i.e. sequence number < i), the destination
drops it because an error-free copy of this frame has already been accepted. However, it sends
an ACK to the source because the retransmission may be due to corrupted ACKs. If the ACK
for a particular frame i did not arrive at the source, it resends frames i through i+N − 1. Thus
it resends N frames starting from the frame which was corrupted because the subsequent frames
are being rejected at the destination. This is the reason for the nomenclature go-back-N . The
rationale behind this apparent wastage is that the rejection of out-of-sequence error-free frames
reduces the memory requirement at the destination. The data link layer at the destination needs
to pass the received frames to the network layer at the destination in the order they were sent. If
the destination did not reject the out-of-sequence error-free frames it would have to store them
in memory while waiting for the missing frame.

The typical operation of GBN ARQ is illustrated in Figure 4.6 for the case of N = 4. The source
is sending frames starting with sequence number 1. The destination responds to an error-free
in-sequence frame with the sequence number of the next expected frame. For instance, the
first frame is received without any errors and the destination responds with an ACK which has

38

Source

Destination

1 2 3 4 5 6 7 3 8 9 10 11

2 3 E

N
A

C
K

3 3 3 3 8 9 10 11

Figure 4.7: Illustration of selective repeat ARQ

sequence number 2 which corresponds to the next expected frame. Frame 3 is received in error
at the destination which is denoted by the squiggly line and the letter E below the point where
the frame is received. The subsequent out-of-sequence error-free frames 4, 5 and 6 are dropped
by the destination which is denoted by the letter D below the point where the frame is received.
The timeout for frame 3 occurs at the source and it resends frames 3, 4, 5 and 6.

The figure also illustrates the advantage of embedding the sequence number of the next expected
frame in the ACK rather than the sequence number of the current received frame. Suppose the
ACK correponding to frame 5 is corrupted but the ACK corresponding to frame 6 is received
without errors at the source. Now the latter ACK informs the source that the sequence number
of the next expected frame is 7 which implies that frame 5 was received without errors. Also
this ACK arrives at the source before the timer for frame 5 expires. Thus an ACK corruption
does not cause a retransmission as long as subsequent ACKs arrive without error and carry the
sequence number of the next expected frame.

Selective Repeat ARQ

In selective repeat ARQ (SR ARQ), the source keeps sending frames without waiting for ACKs
but restricts the number of unacknowledged frames to N . It also responds to negative ac-
knowledgements (NACKs) in between frame transmissions. When the destination receives an
out-of-sequence error-free frame after a corrupted frame, it sends a NACK with the sequence
number of the corrupted frame embedded in it since it is the next expected frame. Upon re-
ceiving a NACK, the source retransmits the frame whose sequence number is present in it. The
destinations stores the out-of-sequence error-free frames which arrive subsequent to a frame error
and waits for the missing frame. While a NACK is sent in response to the first out-of-sequence
error-free frame after a corrupted frame, an ACK is sent for each out-of-sequence error-free
frame which does not immediately follow a corrupted frame. It contains the sequence number
of the earliest corrupted frame as the next expected frame. This is illustrated in Figure 4.7.

Sliding Window Protocols and Sequence Numbers

The three ARQ protocols just described can be characterized as sliding window protocols. In
sliding window protocols, the frames to be transmitted are numbered in an increasing sequence.
The source and the destination maintain a window of frames which they can transmit and receive

39

respectively. The source will not transmit frames which lie outside the sender window and the
destination will not accept frames which lie outside the receiver window.

In SW ARQ, both the sender window and the receiver window have size one and initially contain
the first frame. When the destination receives the first frame without errors, it advances its
window to contain the second frame. It will then acknowledge but drop retransmitted copies of
the first frame. When the source receives an acknowledgement for the first frame, it will advance
its window to contain the second frame. In SW ARQ, a one-bit sequence number suffices to
synchronize the window advances between the sender and the receiver.

In GBN ARQ, the sender window has size N (> 1) while the receiver window has size 1. The
destination is ready to accept only the next expected frame. When an ACK for the oldest
unacknowledged frame arrives at the source, it advances the sender window by one. When the
source infers that frames have been received erroneously, it retransmits all the frames in its
window starting with the oldest unacknowledged frame. Since the sender window size is N ,
the source resends N frames. As in SW ARQ, the destination advances its window by one if it
receives the next expected frame without errors. In GBN ARQ, the range of sequence numbers
required at the source is strictly greater than the window size N . So if m bits are used to
store the sequence number in the frame header or ACK header, the number of possible sequence
numbers is 2m and the window size can be at most 2m − 1. The reason for this can be seen
using an example. Consider the case of m = 3, the number of possible sequence numbers is
8. Let the sequence numbers be {0, 1, 2, 3, 4, 5, 6, 7}. Suppose the window size is N = 23 = 8.
Initially, the source sends frames with sequence numbers 0, 1, . . . , 7. Suppose all the frames are
received without errors at the destination. For each error-free frame the destination increases
the next expected sequence number by one. Initially it is looking for frame 0. After frame 0
is received without errors, it is looking for frame 1 and so on. Hence after frames 0, 1, . . . , 7
are received without errors, the next expected frame (the ninth frame) has sequence number 0
again because after 7 the sequence numbers wrap around. Now suppose that the ACKs for all
the frames 0, 1, . . . , 7 are received with errors at the source. Then they are all ignored and a
timeout occurs at the source resulting in a retransmission of frames 0 through 7. If frame 0 is
received correctly at the destination, then it will accepted. However, the destination thinks this
is the ninth frame which also has sequence number 0 and fails to recognize that it is copy of the
first frame. This results in duplicate frames being passed onto the network layer. This situation
can be avoided if the window size is restricted to a maximum value of N = 23 − 1 = 7. Then in
the example just discussed frames 0, 1, . . . , 6 are sent initially and the next expected frame has
sequence number 7. So retransmissions of frames 0, 1, . . . , 6 due to lost ACKS will be rejected
by the destination.

In SR ARQ, both the source and destination have window size N > 1. The destination accepts
frames which are out-of-sequence as long as they belong to the receiver window. It waits for
the error-free arrival of missing frames before passing them upto the network layer. As in GBN
ARQ, the source advances the sender window by one everytime it receives an ACK for the
oldest unacknowledged frame. The destination advances the receiver window by one everytime
it receives a frame which is the next expected frame. Since SR ARQ can accept frames out of
order, the window size can be at most half the size of the range of sequence numbers. So if m
bits are used to store the sequence number in the frame header or ACK header, the number of
possible sequence numbers is 2m and the window size can be at most 2m−1. The reason for this
can be seen using an example. Consider the case of m = 3, the number of possible sequence
numbers is 8. Let the sequence numbers be {0, 1, 2, 3, 4, 5, 6, 7}. Suppose the window size is more
than 23−1 = 4. LetN = 5. Initially, the source sends frames with sequence numbers 0, 1, 2, 3, 4.
Suppose all the frames are received without errors at the destination. For each error-free frame

40

the destination advances the receive window by one. Initially it is looking for frames {0, 1, 2, 3, 4}.
After frame 0 is received without errors, it is looking for frames {1, 2, 3, 4, 5} and so on. Hence
after frames 0, 1, 2, 3, 4 are received without errors, the receive window is {5, 6, 7, 0, 1} because
after 7 the sequence numbers wrap around. Now suppose that the ACKs for all the frames
0, 1, 2, 3, 4 are received with errors at the source. Then they are all ignored and a timeout occurs
at the source resulting in a retransmission of frames 0 through 4. If frame 0 is received correctly
at the destination, then it will accepted. However, the destination thinks this is the ninth frame
which also has sequence number 0 and fails to recognize that it is copy of the first frame. So
duplicate frames are passed onto the network layer. This can be avoided if the window size is
restricted to a maximum value of N = 23−1 = 4. Then in the example just discussed frames
0, 1, 2, 3 are sent initially and if they are received correctly the receive window is {4, 5, 6, 7}. So
retransmissions of frames 0, 1, 2, 3 due to lost ACKs will be rejected by the destination.

4.2.3 Performance Analysis of ARQ Protocols

Now that we have discussed three different ARQ protocols, we need a way to quantify their
performance. This will not only tell us which ARQ protocol is better but also help us understand
the cost benefit of using a lower complexity ARQ protocol. In general, a performance metric
is defined as a mapping from the set of solutions to a problem to a numerical quantity. In the
present context, the problem is achieving reliable communication over a noisy channel and the
set of solutions contains different ARQ protocols. The performance metric we will choose is
called throughput efficiency which is defined as the following.

Throughput Efficiency =
Throughput

Data Rate

As discussed before, throughput of a communication protocol is defined as the following.

Throughput =
Number of information bits communicated

Time taken to communicate the information bits

In the context of ARQ protocols, the time taken to communicate a frame depends on the
number of times a frame or an ACK is corrupted. For example, in SW ARQ the time taken to
transfer a frame when both the frame and the corresponding ACK are received without errors
is T1 = Tf + Ta + Tp + 2τ . If the frame is corrupted once or the ACK is corrupted once, the
time taken is Tt +T1 where Tt is the timeout duration. So we get a different value of throughput
for different situations. The solution is to model the time taken to communicate the frame as
a random variable and calculate the throughput using the expected value of time taken. So for
ARQ protocols we are defining throughput as

Throughput =
Number of information bits communicated

Expected value of the time taken to communicate the information bits

Analysis of SW ARQ

We will analyse SW ARQ under the assumption that the frame size is fixed and the destination
always has a frame to send. The parameters required in the analysis are given in Table 4.2. Let
X be the random variable which represents the time taken to transfer n information bits from
source to the destination without errors using SW ARQ. If the frame and ACK are received
without errors, X = Ta + Tp + Tf + 2τ as shown in Figure 4.8. Note that we have included
the time it takes for the ACK reach the source in our estimate of the time needed to transfer

41

Number of information bits in frame n
Number of CRC bits in frame k
Frame size in bits n+ k
Number of information bits in ACK m
Number of CRC bits in ACK k
ACK size in bits m+ k
Data Rate 1

T

Frame transmission time Tf = (n+ k)T
ACK transmission time Ta = (m+ k)T
Propagation delay τ
Processing delay Tp

Timeout duration Tt

Probability of errors in frame PFE

Probability of errors in ACK PAE

Table 4.2: Parameters used in the analysis of SW ARQ

Source

Destination

F
ram

e A
C

K

t = 0 t = Tf

t = τ

t = Tf + τ
t = Tp + Tf + τ

t = Tp + Tf + 2τ

t = Ta + Tp + Tf + τ

t = Ta + Tp + Tf + 2τ

Figure 4.8: Illustration of frame and ACK transmission delays in SW ARQ

n bits from source to destination. This is because the source cannot send the next frame until
the ACK is received from the destination. Let T1 = Ta + Tp + Tf + 2τ . Then X = Tt + T1 if
the first transmission of the frame incurs errors and the second frame transmission and ACK
transmission are error-free or the first ACK transmission incurs errors and the second frame
transmission and ACK transmission are error-free. These situations are illustrated in Figures
4.4b and 4.4c. Similarly, X = lTt+T1 if the first l transmissions of a frame are not acknowledged
and the (l + 1)th transmission is acknowledged (l = 0, 1, 2, . . .). Since X cannot take any other
values we have

E[X] =
∞
∑

l=0

(lTt + T1) Pr[X = lTt + T1]. (4.10)

We need to calculate the probability of X being equal to lTt + T1 to be able to calculate E[X].
We will assume that the errors which occurs in two different transmissions are independent
irrespective of whether the transmissions are frames or ACKs. First consider l = 0.

Pr[X = T1] = Pr [(Frame has no errors) ∩ (ACK has no errors)]

= Pr [Frame has no errors] ∩ Pr [ACK has no errors]

= (1− PFE)(1− PAE)

42

Now let l = 1.

Pr[X = Tt + T1] = Pr [{(First transmission of frame has errors)

∩ (Second transmission of frame has no errors)

∩ (ACK has no errors)}
⋃

{(First transmission of frame has no errors)

∩ (ACK has errors)

∩ (Second transmission of frame has no errors)

∩ (ACK has no errors)}]
= Pr [{(First transmission of frame has errors)

∩ (Second transmission of frame has no errors)

∩ (ACK has no errors)}]
+ Pr [{(First transmission of frame has no errors)

∩ (ACK has errors)

∩ (Second transmission of frame has no errors)

∩ (ACK has no errors)}]
= Pr [First transmission of frame has errors]

×Pr [Second transmission of frame has no errors]

×Pr [ACK has no errors]

+ Pr [First transmission of frame has no errors]

×Pr [ACK has errors]

×Pr [Second transmission of frame has no errors]

×Pr [ACK has no errors]

= PFE(1− PFE)(1 − PAE) + (1− PFE)PAE(1− PFE)(1− PAE)

= [PFE + (1− PFE)PAE](1− PFE)(1 − PAE)

where the second equality followed from the mutual exclusivity of the events on either side of
the union and the third equality followed from our assumption that the errors in two different
transmissions are independent.

By a similar argument we can show that

Pr[X = lTt + T1] = [PFE + (1− PFE)PAE]l(1− PFE)(1− PAE)

for all l = 0, 1, 2, 3, Substituting this into Equation (4.10), we get

E[X] =
∞
∑

l=0

(lTt + T1)[PFE + (1− PFE)PAE]l(1− PFE)(1 − PAE)

= (1− PFE)(1− PAE)
∞
∑

l=0

(lTt + T1)[PFE + (1− PFE)PAE]l

Since for |x| < 1,
∑∞

l=0 x
l = 1

1−x
and

∑∞
l=0 lx

l = x
(1−x)2 , we get

E[X] = (1− PFE)(1 − PAE)

[

Tt[PFE + (1− PFE)PAE]

[1− PFE − (1− PFE)PAE]2
+

T1

[1− PFE − (1 − PFE)PAE]

]

= (1− PFE)(1 − PAE)

[

Tt[PFE + (1− PFE)PAE]

[(1 − PFE)(1− PAE)]2
+

T1

(1− PFE)(1 − PAE)

]

43

= T1 +
Tt[PFE + (1− PFE)PAE]

(1− PFE)(1− PAE)

A simple way to verify that we have not committed any major errors in our calculation is to
look at the boundary cases. Suppose the channel is error-free. Then PFE = PAE = 0 and
by substituting this into the above equation we get E[X] = T1. This is consistent because in
an error-free channel every frame is acknowledged in time T1. This mean that X takes value
T1 with probability 1 and hence E[X] = T1. Suppose that the channel is extremely noisy and
PFE → 1, PAE → 1. Then E[X] → ∞ which is expected since there will many retransmissions
in a noisy channel and the time taken will be very large.

We will make the assumption that PAE ≈ 0 in order to simplify the expression for the throughput
of SW ARQ. The other reason for this assumption is that analysis of GBN ARQ becomes very
complicated without it and since we plan to compare the performance of the different ARQ
protocols we want to make the same assumptions for all of them. This assumption of the
probability of ACK error being small can be justified when the size of the ACK is small and
the bit error rate (BER) of the channel is small. When a frame of length M bits is transmitted
across a channel with bit error rate p, the probability no errors will be introduced in the frame
is (1 − p)M assuming that the events of error occuring in different bits are independent. Then
the probability of errors being introduced in the frame is 1− (1− p)M . Now if p is small and M
is small, (1 − p)M will be close to 1 and 1 − (1 − p)M will be close to 0. So if the ACK frame
length is small and channel BER is small, PAE can be approximated by 0. Then the expression
for E[X] becomes

E[X] = T1 +
TtPFE

1− PFE

Since the frame has n information bits, the throughput of SW ARQ is

Throughput of SW ARQ =
n

E[X]
=

n

T1 + TtPF E

1−PF E

Since the data rate is 1
T
, the throughput efficiency of SW ARQ is

Throughput efficiency of SW ARQ = TESW =
SW ARQ Throughput

1
T

=
nT

T1 + TtPF E

1−PF E

If we assume that Tt = T1, the we

TESW =
nT

T1 + T1PF E

1−PF E

=
nT (1− PFE)

T1
=

nT (1− PFE)

Tf + 2τ + Tp + Ta

=
n(1− PFE)

n+ k +
2τ+Tp

T
+m+ k

where the last equality follows from the fact that Tf = (n+ k)T and Ta = (m+ k)T . Thus the
throughput efficiency decreases if the probability of frame error PFE increases or if the number of
check bits k increases or if the propagation delay τ increases or the processing delay Tp increases.

44

Analysis of GBN ARQ

Analysis of SR ARQ

4.3 Medium Access Control

As introduced in Section 1.2.3, multiple access channels are channels where the received signal
at a destination node depends on the signal transmitted by several source nodes. The main
challenge in multiple access channels is the problem of channel allocation, i.e. coordinating the
usage of the multiple access channel among multiple source-destination pairs. The distributed
algorithms which implement the channel allocation are called medium access control (MAC)
protocols or multiple access protocols.

A collision is said to occur in a multiple access channel when more than the allowed number of
sources send information at the same time resulting in a corruption of the signals received at
one or more destinations. On the basis of whether collisions occur or not, MAC protocols can
be classified into random access or conflict-free MAC protocols. In this section, we discuss some
representative MAC protocols from each class.

4.3.1 Conflict-free MAC protocols

In conflict-free MAC protocols, collisions are completely avoided by allocating the channel access
to sources in a predetermined manner. The two most important conflict-free protocols are
frequency division multiple access (FDMA) and time division multiple access (TDMA).

FDMA

In FDMA, the entire channel banwidth is divided into bands each which is reserved for use
by a single source. So if there are N sources and the channel bandwidth is W , each source is
allocated a W

N
chunk of bandwidth for its own exclusive use. Since each source transmits only in

its frequency band, collisions are completely avoided. FDMA is a simple and efficient solution
to the channel allocation problem when the number of sources is a small constant and each of
them always has some information to transmit. FDMA also does not require any coordination
among the sources once the channel band allocation has been fixed greatly simplifying the system
implementation. But FDMA is inefficient when the number of sources is large and varying or
when the sources send information in a bursty manner. If the bandwidth is divided into N
bands with each band allocated to a source, more than N sources cannot use the channel. This
problem is aggravated if the users who have been allocated frequency bands send information
intermittently. Then the channel is underutilized even though there are sources who want to
transmit information through it. Even if the number of sources is small and constant, FDMA
is inefficient when the source traffic is bursty because bandwidth allocated to sources which do
not have any information to send at a particular time could have been used to increase the
transmission rate of the sources which do have information to send.

Suppose the channel of bandwidth W can sustain a data rate of R bits/s. Then the per source
data rate when FDMA is used is R

N
. Suppose all the frames sent by the sources are of length

equal to L bits. Then the service time of each frame is NL
R

seconds. We will assume that each
source generates frames according to a Poisson process with rate λ frames per second. We will

45

also assume that the channel is error-free to isolate the effect of the queueing delay of the frames
from the delays caused by ARQ retransmissions. Then the FDMA system can be viewed as
an M/G/1 queueing system (discussed in Section 5.4) with mean service time X = NL

R
and

the second moment of the service time X2 = (NL)2

R2 . In fact, it is an M/D/1 queueing system.
The average time spent by a frame (which is the customer here) in the system is given by the
following equation where ρ = λ

µ
= λX.

T = X +
λX2

2(1− ρ) = X +
ρX

2(1 − ρ) = X

[

1 +
ρ

2(1− ρ)

]

=
NL

R

[

2− ρ
2(1 − ρ)

]

If the frame was sent using the whole channel bandwidth, the transmission time is given by
L
R

. Normalizing the above equation by this value we get the normalized delay experienced by a
frame entering the system as

T̂FDMA =
N(2− ρ)
2(1 − ρ)

which gives the delay-throughput characteristic of FDMA where ρ can be interpreted as the
throughput. We see that the delay increases linearly with the number of sources N . It also
grows without bound when ρ approaches one.

TDMA

In TDMA, the time axis is divided into slots and each slot is allocated to a source. Each source
transmits only during the time slot reserved for its use avoiding the possibility of collisions. If
there are N sources, the collection of N slots in which each source transmits exactly once is
called a cycle. Contrary to FDMA, TDMA requires some amount of synchronization among the
sources in terms of the location and duration of the time slots when transmissions can occur.
Pure TDMA suffers from the same problem of underutilization as FDMA when the source traffic
is bursty.

Once again we assume that all the frames generated by the sources have equal length (L bits).
We assume that the channel can support a data rate equal to R bits/s. Then the transmission
time of a frame is L

R
. We assume that the slot duration is equal to L

R
, the time required to

transmit one frame. Once again each source is assumed to generate frames according to a
Poisson process with rate λ frames per second. The time spent by a frame in the system, i.e.
the delay experienced by a frame has three components.

• Time between generation of the frame and end of the current cycle

• Time spent waiting for other frames which were generated before it to be transmitted

• The frame transmission time

To calculate the average delay experienced by a frame we have to invoke the theory of theM/G/1
queueing system with vacations. In such a system, the server takes a ”vacation” whenever it
finds that there are no customers to be served. If customers arrive during a vacation, they are
not served until the vacation is complete. If no customers arrive during a vacation, the server
takes another vacation. The formula for the average time spent by a customer in such a system
is given by

T =
L

R
+

λX2

2(1 − ρ) +
V 2

2V

46

where V and V 2 are the average vacation time and the second moment of the vacation time
respectively. The TDMA system can be interpreted as such a system because of the cycle
structure. Suppose there are N sources and suppose source 1 has no frames to send when its
slot arrives, then the next opportunity for source 1 appears only after NL

R
seconds, i.e. after N

slots. This can be viewed as a vacation of duration NL
R

because a frame generated by source 1
during this time has to wait till the end of the cycle to be transmitted. For TDMA, V = NL

R
,

V 2 = (NL)2

R2 , X = NL
R

and X2 = X
2
. Then the normalized delay for the TDMA system is given

by

T̂TDMA =
T
L
R

= 1 +
Nρ

2(1 − ρ) +
N

2
= 1 +

N

2(1− ρ)

We see that the difference between the normalized delays in TDMA and FDMA is given by

T̂FDMA − T̂TDMA =
N(2− ρ)
2(1 − ρ) − 1− N

2(1 − ρ) =
N

2
− 1.

Thus the average delay experienced by a frame in FDMA is greater than the average delay
experienced by a frame in TDMA when N ≥ 2. Also, the difference grows linearly with N and
is independent of the arrival rate λ.

4.3.2 Random Access MAC Protocols

In the conflict-free MAC protocols discussed in the previous section, collisions are completely
avoided by design. But there is wastage of channel resources when the traffic is bursty. Random
access MAC protocols prevent this wastage in the case of bursty traffic when the traffic load is
low at the cost of occassional collisions between source transmissions. Colliding frames would
have to be retransmitted until they are received correctly. When the traffic load is high, frequent
collisions occur when random access MAC protocols are used reducing their efficiency.

For the random access MAC protocols discussed below, we assume that all the sources accessing
the channel are one hop away from each other. Thus the channel is a broadcast channel, i.e.
all the sources can hear the transmissions of all the other sources. We also assume that if
a collision occurs, i.e. the transmissions of two or more sources overlap in time, none of the
intended destinations receive the transmitted frames correctly. We assume that the only errors
experienced by the frames are due to collisions, i.e. the channel noise is negligible.

ALOHA

In the ALOHA protocol, sources transmit whenever they have a frame to send. If a source’s
frame transmission suffers a collision, the source detects the collision either by listening while
transmitting or by the absence of an acknowledgement. Once collision has been detected, the
source waits for a random amount of time before retransmitting the frame. This random waiting
time is used to avoid the situation where the same frames keep colliding indefinitely.

We will now perform an approximate analysis to estimate the throughput of the ALOHA protocol
where throughput is defined as the fraction of the frame transmissions which are successful.
Assume that all the frames generated by the sources are of equal length and require Tf seconds
to be transmitted. Assume that there is an infinite population of sources which cumulatively

47

generate frames according to a Poisson distribution with mean rate of λ frames per Tf seconds,
i.e. λ frames per frame transmission time. The infinite population assumption is made to ensure
that the frame generation rate remains constant even if some sources are involved in collisions
and are thus not generating new frames. If λ > 1, the sources are generating frames faster than
the channel can accommodate even if there were no collisions. In such a system, nearly every
frame will suffer a collision. So a feasible system has to have 0 < λ < 1.

Sources not only transmit newly generated frames but also transmit frames which were previously
involved in a collision. We assume that the offered load on the channel is also Poisson distributed
with mean rate G frames per frame transmission time where G > λ. Then the throughput S is
the offered load G times the probability P0 of a successful transmission, i.e. S = GP0.

A frame transmitted at time t0 will not suffer a collision if no frames are transmitted in the
interval [t0− Tf , t0 + Tf]. Since the offered load is Poisson distributed with mean rate G frames
per Tf seconds, the probability that k frames are transmitted in the interval of size 2Tf is given
by

Pr{k frames transmitted in 2Tf seconds} =
(2G)ke−2G

k!

Thus P0 = Pr{0 frames transmitted in 2Tf seconds} = e−2G and the throughput of ALOHA
protocol is given by

S = Ge−2G

The maximum throughput occurs when G = 0.5 and is S = 1
2e
≈ 0.184. So frames are trans-

mitted successfully only 18% of the time.

Slotted ALOHA

Slotted ALOHA is a simple way of achieving double the througput of the ALOHA protocol. It
is similar to ALOHA except that the time axis is divided into slots and sources are allowed to
transmit frames only at the beginning of slots. This reduces the vulnerability duration for a
frame transmission by half compared to pure ALOHA.

We give an approximate analysis which gives us the correct througput of slotted ALOHA with-
out resorting to the complex theory of regenerative processes. A frame transmitted at a slot
boundary beginning at time t0 will not suffer a collision if no other frames are transmitted in
that slot, i.e. no frames were scheduled for transmission in the interval [t0−Tf , t0] where we have
assumed that a slot duration is equal to a frame transmission time. If the offered load is again
assumed to be Poisson distributed with mean rate G frames per Tf seconds, the probability that
k frames are scheduled for transmission in an interval of size Tf is given by

Pr{k frame transmissions scheduled in Tf seconds} =
(G)ke−G

k!

Thus the probability of successful frame transmission P0 is equal to the probability that 0 frame
transmissions were scheduled in Tf seconds which is e−G and the throughput of ALOHA protocol
is given by

S = GP0 = Ge−G

The maximum throughput occurs when G = 1 and is S = 1
e
≈ 0.368. So frames are transmitted

successfully 37% of the time which is double that of ALOHA.

48

Carrier Sense Multiple Access (CSMA) Protocols

In the ALOHA protocols, the sources transmit without regard to whether the channel is being
used at that instant and a maximum throughput of 1

e
is achieved. A higher throughput can be

achieved by carrier sense multiple access (CSMA) protocols if the sources have ability to listen
to the channel and detect ongoing transmissions, i.e. they have the ability to sense the carrier.

The simplest CSMA protocol is called 1-persistent CSMA. In this protocol, when a source has a
frame to send it listens to channel to see if any other source is transmitting. If the channel is idle,
it will transmit its frame. If the channel is busy, the source keeps listening to the channel until
it becomes idle and then transmits its frame. If a collision occurs, the source waits a random
amount of time and then starts listening to the channel again. The protocol is called 1-persistent
because it allows sources to transmit with probability 1 whenever they find the channel to be
idle.

In 1-persistent CSMA, collisions will definitely occur at the end of a frame transmission if more
than one source has been waiting for the channel to become idle. A solution to this problem is
the nonpersistent CSMA. In this protocol, a source transmits its frame if it finds the channel
to be idle. If the channel is busy, the source does not continuously listen to the channel. It
waits for a random amount of time and starts listening to the channel. This protocol reduces
the number of collisions as compared to 1-persistent CSMA but results in longer delays being
experienced by a frame.

The p-persistent CSMA protocol is used in slotted channels. In this protocol, when the source
has a frame to send it listens to the channel. If the channel is idle, the source transmits its
frame in the current slot with a probability p and defers until the next slot with probability
q = 1 − p. If the channel is idle in the next slot as well, the source either transmits or defers
again with probabilities p and q respectively. This process continues until either the frame has
been successfully transmitted or another source has started transmitting. In the latter situation,
the source reacts as if a collision has occurred, i.e. it waits for a random amount of time and
starts listening to the channel.

The propagation delay plays an important role in the functioning of CSMA protocols. Suppose
a source listens to the channel and decides to transmit on finding it idle. It can happen that a
second source starts listening to the channel just after the first source starts transmitting and
declares that the channel is idle because the signal from the first source has not reached it yet.
It can then proceed to transmit its own frame resulting in a collision. So it is necessary that the
propagation delay be small, otherwise the above situation will occur more frequently.

CSMA/CD Protocols

In carrier sense multiple access with collision detection (CSMA/CD) protocols, sources abort
their transmissions as soon as they detect a collision. So if two sources start transmitting at
the same time after finding the channel to be idle, their frames will collide but the sources will
abort the frame transmissions as soon as they detect a collision instead of finishing the frame
transmissions. Sources involved in a collision wait for a random amount of time before listening
to the channel.

To make collision detection possible the source has to listen to the channel while transmitting.
This makes CSMA/CD a half-duplex system because the receiver subsystem is in constant use
listening for collisions even during transmission. Furthermore, a source has to listen for collisions

49

A B C

(a) The hidden node problem

A B C

D

(b) The exposed node problem

Figure 4.9: Illustration of the hidden node and exposed node problems.

for a duration equal to the maximum round-trip time of the multiple access channel before it
is sure that it has captured the channel. Suppose the maximum propagation delay between
sources is τ , i.e. the maximum round-trip time is 2τ . Suppose a source starts transmitting a
frame at time t0. Then a second source which is at a propagation delay τ from the first one will
hear the transmission only at time t0 + τ . If the second source starts transmitting a frame at
time t0 + τ − ǫ, it will detect the collision at time t0 + τ and abort its transmission. But the
first source will hear the short burst sent by the second source only at t0 + 2τ − ǫ.

CSMA/CA Protocols

In wireless multiple access channels, it is sometimes not possible for a source to detect ongoing
transmissions at faraway sources due to the path loss. In these channels, all assumption of all
sources being one hop away from each other no longer holds. For such channels, carrier sense
multiple access with collision avoidance (CSMA/CA) protocols are used.

In addition to coordinating the channel access, these protocols solve what is called the hidden
node problem. This is illustrated in Figure 4.9a where the grey circle represents the transmission
range of the node C. The node A wants to send a frame to B. Node C is transmitting a frame to
node B but its transmission is not heard by node A because it out of range of A. So when node
A listens to the channel it decides that the channel is idle and proceeds to transmit a frame to
B resulting in a collision at node B. There is a second problem called the exposed node problem
which cannot be completely solved by these protocols. This is illustrated in Figure 4.9b. In this
case, node A is transmitting to node D and node B lies within its transmission range. Node B
wants to send a frame to node C which it can do even in the presence of node A’s transmission
because node C lies outside the transmission range of node A. But when node B listens to the
channel it hears A’s transmission, decides that the channel is busy and refrains from sending a
frame to C.

The main idea behind CSMA/CA is that the source requests the destination to send a short
frame informing all the nodes in the destination’s neighborhood of an impending transmission
which should not be interfered with. Suppose a node B wants to send a frame to node C it sends
an Request to Send (RTS) frame to C. This short frame contains the length of the longer data
frame which will follow. This is illustrated in Figure 4.10a where the grey circle represents the
transmission range of node B. Node C responds by sending a Clear to Send (CTS) frame which
also contains the length of the upcoming data frame. Once the CTS is received by node B, it
begins to transmit the data frame. The main consequence of the RTS-CTS mechanism is that

50

A B C D
RTS

(a) Node B sending RTS to node C

A B C D
CTS

(b) Node C sending CTS to node B

Figure 4.10: Illustration of the RTS-CTS mechanism

the nodes which over the RTS and CTS refrain from transmitting during the frame transmission
from node B to node C. For instance, when node D hears the CTS frame it reads the length of
the upcoming data frame and defers transmission until the data frame is transmitted completely.
Since D does not hear the RTS sent by B it can infer from the CTS that a hidden node (node
B in this case) is trying to send data to node C. Similarly, when node A hears the RTS sent by
B but not the CTS sent by C it infers that it is itself an exposed node and is free to transmit
while the transmission from B to C is ongoing. In spite of the RTS-CTS mechanism, collisions
can occur, for example, when two nodes transmit an RTS at the same time. When collisions
occur, the nodes involved in the collision wait a random amount of time and retransmit.

51

Chapter 5

Queueing Theory

Any system in which consumers have to wait to gain access to a finite-capacity resource can be
called a queueing system. The finite-capacity resource is called a server and the consumers are
typically referred to as customers. A queue of customers results when their service requirements
cannot be immediately met by the server. Queueing theory is the study of the phenomena of
waiting and serving at a queue. The dynamics of a queueing system primarily depends on two
aspects: the arrival behavior of the customers and the serving capability of the server. Often
the service rate of the server is constant and it is the customers who each require a different
amount of service from it. In queueing theory, the customer arrival process is characterized by
the probability distribution of the interarrival times of customers which is given by

A(t) = Pr [Time between customer arrivals ≤ t] .

The usual assumption is that the interarrival times of customers are independent, identically
distributed (iid) random variables. Hence A(t) completely characterizes the arrival process.
Similarly, the serving capability of the server is characterized by the probability distribution of
the service time which is given by

B(t) = Pr [Service time ≤ t] .

Additional quantities which describe the capabilities of the server are the maximum number
of customers who can be accomodated by the server in a queue (this is usually assumed to be
infinite) and the number of customers who can be serviced simultaneously (this is assumed to
be one for now).

The performance metrics used to characterize the quality of a queueing system are the waiting
time for a customer, the number of customers waiting in the system, the length of a busy period
(the time during which the server is busy) and the length of an idle period (the time during
which the server is idle). These metrics are random variables and vary from one realization of
the system to another. So their mean and variance are used to quantify the performance of the
queueing system.

In the next section, we introduce some basic notation which will serve to illuminate the structure
of a queueing system.

52

5.1 Preliminaries

5.1.1 Kendall’s notation

Different types of queueing systems are described by convenient shorthand called Kendall’s
notation. It consists of a five-part descriptor A/B/m/K/L where

• A describes the type of customer arrival process. When the arrival process is Poisson
process, A is replaced by M which stands for memoryless. We will see that the interarrival
times for a Poisson process are exponentially distributed. A process with deterministic
interarrival time is denoted byD and one with any general distribution of interarrival times
is denoted by G.

• B describes the type of service time distribution. It can takes values M , G and D cor-
responding to exponentially distributed, generally distributed and deterministic service
times.

• m indicates the number of servers, i.e. the number of customers who can be serviced
simultaneously.

• K denotes the queueing system’s storage capacity, i.e. the maximum number of customers
who can be present in the system.

• L denotes the size of the customer population.

If K and L are assumed to be infinite, they are omitted from the description and we are left with
a three-part descriptor A/B/m. For example, the M/M/1 queueing system consists of a single
server with infinite storage capacity servicing an infinite population of customers who arrive
with interarrival times which are exponentially distributed and experience service times which
are also exponentially distributed. The assumptions of infinite storage capacity and population
help make the analysis simple. The analytical results obtained through these assumptions apply
to practical systems when the storage capacity and customer population are large.

5.1.2 Queue state variables

We will denote the nth customer who arrives at a queue by Cn and the number of customers in
the system at time t by N(t). Let U(t) denote the amount of unfinished work in the system at
time t, i.e. the time required to service all the customers present in the system at time t. When
U(t) > 0, the system is busy and the system is idle when U(t) = 0. The busy and idle times of
the system are of interest to the system designer. These can be characterized in terms of the
interarrival times and service times of the customers.

Let tn denote the arrival time of the nth customer Cn. Then the interarrival time between Cn−1

and Cn is defined as τn = tn − tn−1. If we assume that the interarrival times are iid and their
distribution is A(t), we have Pr[τn ≤ t] = A(t).

Let xn denote the service time for Cn. If we assume the service times are iid and distributed
according to B(x), then Pr[xn ≤ x] = B(x). But the nth customer receives service from the
server after it has waited in the queue for some time which we define as the waiting time wn.
Thus the total time spent by Cn is the sum of this waiting time and the service time which we
define as his system time sn = wn + xn.

53

5.1.3 Poisson process

Consider a stochastic process {A(t)|t ≥ 0} which takes nonnegative integer values. Suppose
the value of A(t) is equal to the number of customer arrivals in the interval [0, t] and that the
number of arrivals in disjoint intervals are independent. Then {A(t)|t ≥ 0} is called a Poisson
process with rate λ if the number of arrivals in any interval of length τ is Poisson distributed
with parameter λτ , i.e. for all t, τ > 0

Pr {A(t+ τ)−A(t) = n} = e−λτ (λτ)n

n!
, n = 0, 1, 2, . . .

The expectation or average value of the number of arrivals in an interval of length τ turns out
to be λτ which leads us to the interpretation of the λ as the arrival rate.

An important property of the Poisson process is that interarrival times are independent and
exponentially distributed. So if tn is the arrival time of the nth customer Cn, then the interarrival
time between Cn−1 and Cn, τn = tn − tn−1 has probability distribution

Pr[τn ≤ s] = 1− e−λs, for s ≥ 0.

The corresponding probability density function is given by p(τn) = λe−λτn . Also, the sequence
of random variables {τn} are mutually independent. The mean and variance of the interarrival
time turn out to be 1

λ
and 1

λ2 , respectively.

A unique characteristic of the exponential distribution is its memoryless character which can be
expressed as

Pr {τn > r + t|τn > t} = Pr {τn > r} , for r ≥ 0.

This means that the additional time before the next arrival is independent of the time which
has already passed waiting for it. This can be proved in the following manner.

Pr {τn > r + t|τn > t} =
Pr {τn > r + t}

Pr {τn > t} =
e−λ(r+t)

e−λt
= e−λr = Pr {τn > r}

In fact, the exponential distribution is the only probability distribution which has the memoryless
property.

Using the fact that e−λδ = 1− λδ + (λδ)2/2− · · ·, the probability of the number of arrivals due
to a Poisson process in an interval of size δ can be expressed as

Pr{A(t+ δ) −A(t) = 0} = 1− λδ + o(δ)

Pr{A(t+ δ) −A(t) = 1} = λδ + o(δ)

Pr{A(t+ δ) −A(t) ≥ 2} = o(δ)

where o(δ) is any function of δ which satisfies

lim
δ→0

o(δ)

δ
= 0

If k independent Poisson processes A1, A2, . . . , Ak are merged into a single process A =
∑k

i=1Ai,
the process A is also Poisson with rate equal to the sum of the k rate of the constituent processes.

54

5.1.4 Markov chains

Consider a stochastic process {Xn : n = 0, 1, 2, . . .} that takes on a finite or countable number
of possible values. Without loss of generality, this set of possible values for the process will be
denoted by the set of nonnegative integers {0, 1, 2, . . .}. If Xn = i for i ≥ 0, the process is said
to be in state i at time n. A stochastic process {Xn : n = 0, 1, 2, . . .} is called a Markov chain if

Pr {Xn+1 = j|Xn = i,Xn−1 = in−1, . . . ,X1 = i1,X0 = i0} = Pr {Xn+1 = j|Xn = i} = Pij ,

for all states i0, i1, . . . , in−1, i, j and all n ≥ 0. The interpretation is that the conditional dis-
tribution of any future state Xn+1 given the past states X0,X1,X2, . . . ,Xn−1 and the present
state Xn, is independent of the past states and depends only on the present state.

If the process is in state i, Pij is the probability that it will be in state j next and is called
the transition probability from state i to state j. Note that Pij does not depend on n, i.e. the
transition probabilities are the same no matter when the process is in a particular state. Since
the transition probabilities are nonnegative and the process has to make a transition to some
state, we have Pij ≥ 0 for all i, j ≥ 0 and

∞
∑

j=0

Pij = 1, i = 0, 1, 2, . . .

5.2 Little’s Theorem

When the average arrival rate exceeds the average service rate, the queue length becomes un-
bounded resulting in eventual system failure. The interesting case is when the average arrival
rate is less than the average service rate. In this case, in order to predict the average delay or the
average number of customers in the queueing system we require detailed statistical information
regarding the customer arrival times and their service times. However, for queueing systems
which reach a steady state there exists a simple relationship between the average delay and the
average number of customers called Little’s theorem.

Let α(t) denote the number of customers who have entered the queueing system in the interval
(0, t). Let β(t) denote the number of customers who depart the system after completion of their
service in the interval (0, t). An observer at the input of the queueing system would observe
α(t) customers entering the system in the given interval and an observer at the output of the
queueing system would observe β(t) customers departing the system in the given interval. Then
at any time t, the number of customers in the system N(t) is given by

N(t) = α(t)− β(t).

If the functions α(t) and β(t) are plotted as functions of time, the area between them represents
the total time all customers have spent in the system (measured in customer-seconds) during
the interval (0, t). Let γ(t) denote this area. Then

γ(t) =

α(t)
∑

i=1

si

where si is the system time (sum of waiting time and service time) of the ith customer. Let λt

be the average arrival rate in the interval (0, t). Then

λt =
α(t)

t
.

55

If we define Tt as the average system time per customer over the interval (0, t), we get

Tt =
γ(t)

α(t)

If we define N̄t as the average number of customers in the queueing system in the interval (0, t),
we can calculate it as the total number of customer-seconds accumulated divided by the interval
length t

N̄t =
γ(t)

t

From the above three equations we see that

N̄t = λtTt

Now if we assume that the queueing system reaches a steady state, i.e. the following limits exist

λ = lim
t→∞

λt

T = lim
t→∞

Tt

then the limit limt→∞ N̄t will also exist. This limit is the average number of customers in the
system N̄ which now satisfies the equation

N̄ = λT.

This equation is called Little’s theorem. It states that, for a queueing system which reaches a
steady state, the average number of customers is equal to the product of the average arrival rate
of the customers to the system and the average time spent in that system.

In the above proof, we have not made any specific assumptions regarding the interarrival time
distribution or the service time distribution. Also, we have not precisely defined the boundary
around the queueing system. So if we consider a system which consists of only the queue and
not the server, Little’s theorem would state that

N̄q = λW.

where N̄q is the average number of customers waiting in the queue and W is the average time
spent by a customer waiting in the queue. If we had considered only the server and not the
queue, we would get

N̄s = λx̄.

where N̄s is the average number of customers in the server and x̄ is the average time spent by
the customer in the server. It is always true that

T = x̄+W

5.3 The M/M/1 Queueing System

The M/M/1 queueing system consists of a single server serving customers who arrive according
to a Poisson process with rate λ, i.e. their interarrival times are exponentially distributed. The

56

service times of the customers are also exponentially distributed. The storage capacity of the
system is assumed to be infinite and the population from which the customers arrive is also
assumed to be infinite. From Little’s theorem, we know that the average number of customers
in the system is given by

N̄ = λT

where T is the average time spent by a customer in the system. If we can calculate the steady-
state probabilities of the number of customers in the system,

pn = Probability of n customers in the system, n = 0, 1, 2, . . . ,

we can calculate the average number of customers N̄ as

N̄ =
∞
∑

n=0

npn.

Then by applying Little’s theorem, we can get the average time spent by a customer as

T =
N̄

λ
.

Let N(t) denote the number of customers present in the system at time. Due to the Poisson
arrival process and memoryless nature of service times, {N(t)|t ≥ 0} forms a continuous-time
Markov chain, i.e. the future numbers of customers depends on the past numbers only through
the present number of customers in the system. However, the simpler theory of discrete-time
Markov chains is sufficient to calculate the average number of customers in the system. The
continuous-time Markov chain is discretized by considering the state of the system at times
{kδ : k ≥ 0} where δ is a small positive real number. Let Nk = N(kδ). Then {Nk|k = 0, 1, 2, . . .}
is a discrete-time Markov chain with the same pn’s as the continous-time Markov chain. Note
the pn can be interpreted as the fraction of time in which the system has n customers. If δ is
small enough, this fraction is preserved even after we discretize time.

5.3.1 State Transition Probabilities

The system is in state n at a particular time instant kδ ifNk = n customers at time instant kδ. So
a transition from state i to state i+1 occurs ifm customers arrive in the interval Ik = (kδ, (k+1)δ]
and there are m − 1 customer departures in the same interval where m = 1, 2, 3 Let Pij

denote the transition probability from state i to state j. Then

Pij = Pr {Nk+1 = j|Nk = i}

where the dependence of Pij on δ is not shown for simplicity. Then we can show that

P00 = 1− λδ + o(δ)

Pii = 1− λδ − µδ + o(δ), i ≥ 1

Pi,i+1 = λδ + o(δ), i ≥ 0

Pi,i−1 = µδ + o(δ), i ≥ 1

Pij = o(δ), i and j 6= i, i+ 1, i− 1.

where the o(δ) represents any function which satisfies limδ→0
o(δ)

δ
= 0.

57

Let us look at some of these transition probabilities in detail. P00 is the probability that the
system transitions from state 0, i.e. Nk = 0 to Nk+1 = 0. Since Nk is the number of customers
in the system at time kδ, such a state transition occurs if the number of customer arrivals is
equal to the number of customer departures in the interval Ik, i.e.

P00 =
∞
∑

m=0

Pr {m customers arrive and all of them depart in the interval Ik } (5.1)

First let us estimate the probability that 0 customers arrive in the interval Ik. Since the number
of customers arriving in an interval has Poisson distribution, this is given by

Pr {No customers arrive in Ik} = e−λδ (λδ)0

0!
= e−λδ = 1− λδ + o(δ)

Now let us estimate the probability of one customer arriving and departing in the interval Ik.
Since the arrival and departure processes are memoryless, we can take k = 0 and just look at
the interval (0, δ]. This makes our calculations easier. The customer can arrive at any time
t ∈ (0, δ]. Given that the customer arrived at time t, the probability that she will depart before
time δ is the probability that the service time is less than or equal to δ − t. Since the service
time is exponentially distributed with rate µ, the probability of it being less than or equal to
δ − t is given by

Pr {Service time ≤ δ − t} = 1− e−µ(δ−t)

The interarrival time has an exponential distribution which is a continuous distribution. So the
event that the customer arrives at a time exactly equal to t is zero. The trick is to consider an
infinitesimal interval from t to t+dt and look at the event of a customer arriving in this interval.
Such an event has probability λe−λt dt where λe−λt is the probability density function of the
interarrival time. Since t can vary from 0 to δ, we can write the probability of one customer
arriving and departing in the interval (0, δ] as

Pr {One customer arriving and departing in (0, δ]} =

∫ δ

0
λe−λt(1− e−µ(δ−t)) dt

= −e−λt
∣

∣

∣

δ

0
− λe−µδ e

(µ−λ)t

µ− λ

∣

∣

∣

∣

∣

δ

0

= 1− e−λδ − λe−µδ e
(µ−λ)δ − 1

µ− λ

= 1− e−λδ − λe
−λδ − e−µδ

µ− λ

= 1− e−λδ − λ(µ− λ)δ + o(δ)

µ− λ
= 1− e−λδ − λδ + o(δ)

= o(δ)

Let Am be the event of m customers arriving and Dm be the event of m customers departing
in the interval (0, δ]. For m ≥ 2, the probability of m customers arriving and departing in the
interval (0, δ] is given by

Pr {Am ∩Dm} = Pr {Dm|Am}Pr{Am}

= Pr {Dm|Am} e−λδ (λδ)m

m!
= o(δ)

58

where the last equation follows from the fact that Pr{Dm|Am} ≤ 1, e−λδ = 1 − λδ + o(δ) and
m ≥ 2.

Substituting the calculated probabilities in Equation (5.1) we get

P00 = 1− λδ + o(δ)

When the system is in state i ≥ 1, then the probability of zero customer arrivals and departures
in the interval Ik is given as

Pr{No customers arrive or depart in Ik} = e−λδe−µδ = 1− λδ − µδ + o(δ) (5.2)

where the last equation is obtained by expanding the exponentials as power series in δ.

When the system is in state Nk = 1, the probability of no customer arrivals and one departure
in the interval Ik is given simply as

Pr{Zero customers arrive and one departs in Ik|Nk = 1} = e−λδ(1− e−µδ) = µδ + o(δ) (5.3)

When the system is in state Nk > 1, the event of no customer arrivals and one departure in
the interval Ik is the event that exactly one customer departs and no new customer arrives. So
after one customer departs the next customer whose service starts should not depart, i.e. his
service should not complete. As before, we will look at the interval (0, δ] instead of Ik. The
probability of no arrivals in this interval is just e−λδ. If a customer departure occurs at t ∈ (0, δ],
the service time of the subsequent customer needs to be larger than δ− t. Since the service time
is exponentially distributed with rate µ, the probability of it being larger than δ − t is given by

Pr {Service time > δ − t} = e−µ(δ−t)

Considering an infinitesimal interval from t to t+ dt, the probability of a customer completing
service in this interval is µe−µt dt. Since t can vary from 0 to δ, we can write the probability of
exactly one customer departure and no arrivals in the interval (0, δ] as

Pr {Zero customers arrive and one departs in Ik|Nk > 1} =

∫ δ

0
e−λδµe−µte−µ(δ−t) dt

= e−λδµe−µδ
∫ δ

0
dt

= µδe−(λ+µ)δ

= µδ + o(δ) (5.4)

So the probability of zero customers arriving and one departing given there is at least one
customer in the system is

Pr{Zero customers arrive and one departs in Ik|Nk ≥ 1}
= Pr{Zero customers arrive and one departs in Ik|Nk = 1}Pr{Nk = 1|Nk ≥ 1}

+ Pr{Zero customers arrive and one departs in Ik|Nk > 1}Pr{Nk > 1|Nk ≥ 1}
= [µδ + o(δ)] (Pr{Nk = 1|Nk ≥ 1}+ Pr{Nk > 1|Nk ≥ 1})
= µδ + o(δ) (5.5)

Similarly, the probability of one customer arrival and no departures in the interval can be
calculated as

Pr {One customer arriving and none departing in Ik} = λδ + o(δ) (5.6)

59

0 1 2 n− 1 n n+ 1

λδ

µδ

1− λδ

λδ

µδ

1− λδ − µδ 1− λδ − µδ

λδ

µδ

1− λδ − µδ

λδ

µδ

1− λδ − µδ 1− λδ − µδ

Figure 5.1: State transition diagram of the discretized M/M/1 queue

The probabilities in Equations (5.2), (5.5) and (5.6) add up to 1 plus o(δ). So only these events
where at most one arrival or departure happens are likely to occur and the probability of more
than one arrival or departure in the interval Ik is insignificant for small δ. Thus it follows that
Pii (i ≥ 1) which is the probability of equal number of departures and arrivals in the interval
Ik is within o(δ) of probability in Equation (5.2). The other state transition probabilities Pi,i+1

and Pi,i−1 can be argued to be within o(δ) of the values in Equations (5.5) and (5.6). The state
transition diagram of the Markov chain representing the discretized M/M/1 queue is shown in
Figure 5.1 where the o(δ) terms have been omitted for clarity.

5.3.2 Stationary Distribution

The stationary distribution of a Markov chain consists of the steady-state probabilities of finding
the system in a particular state, i.e pn, n = 0, 1, 2, ldots. For the Markov chain described by
the state transition diagram given in Figure 5.1, the stationary distribution is known to exist
because the chain is irreducible and all its states are positive recurrent. These properties of a
Markov chain are outside the scope of this course. The bottomline is that this Markov chain
has a stationary distribution.

The steady-state probabilities can be interpreted as the frequency with which a state is visited
by the system and are given by

pn = lim
k→∞

Pr{Nk = n} = lim
k→∞

∑k
l=0 In(Nl = n)

k

where In(·) is the indicator function which takes the value 1 if Nl is equal to n and the value
0 otherwise. So the summation in the above equation equals the number of l’s for which the
system is in state n in the interval [0, (k + 1)δ].

In any time interval, the number of transitions from state n to n+1 must differ from the number
of transitions from state n+1 to n by at most 1. As the time interval of interest goes to infinity,
the frequency of transitions state n to n + 1 is equal to the frequency of transitions from state
n + 1 to state n. Thus the probability that the system is in state n and makes a transition to
state n + 1 is equal to the probability that the system is in state n + 1 and makes a transition
to state n, i.e.

pnλδ + o(δ) = pn+1µδ + o(δ).

Dividing both sides of this equation by δ and taking limit as δ → 0, we get

pnλ = pn+1µ⇒ pn+1 = ρpn

where ρ = λ
µ
. Consequently, we have

pn+1 = ρn+1p0, n = 0, 1, 2, . . . (5.7)

60

Since system has to be in some state at any time, we have

∞
∑

n=0

pn = 1⇒
∞
∑

n=0

ρnp0 = 1

If ρ < 1, we get

∞
∑

n=0

ρnp0 =
p0

1− ρ = 1⇒ p0 = 1− ρ.

Substituting the value of p0 in Equation (5.7), we get

pn = ρn(1− ρ), n = 0, 1, 2, . . . (5.8)

Now we can calculate the average number of customers N̄ as

N̄ =
∞
∑

n=0

npn =
∞
∑

n=0

nρn(1− ρ) =
ρ

1− ρ =
λ

µ− λ

As the value of ρ→ 1, N̄ →∞.

Then by Little’s theorem, the average time spent by the customer in the system is given by

T =
N̄

λ
=

ρ

λ(1− ρ) =
1

µ− λ

The average time spent waiting in the queue W is the difference between the average system
time and the average service time which is given by

W =
1

µ− λ −
1

µ
=

ρ

µ− λ.

Again by applying Little’s theorem, the average number of customers in queue is

N̄q = λW =
λρ

µ− λ =
ρ2

1− ρ

5.4 The M/G/1 Queueing System

The M/G/1 queueing system is a single-server queueing system in which the customer interar-
rival times are exponentially distributed but the service times have a general distribution. The
storage capacity and customer population are assumed to be infinite.

Let Xi be the service time of the ith customer. We assume that the service times (X1,X2, . . .)
are independent and identically distributed. They are also assumed to be mutually independent
of the interarrival times. Let X denote the average service time. Then

X = E[Xi] =
1

µ

where µ is the service rate. Let the second moment of the service time be X2 = E[X2
i].

61

The average time spent by a customer waiting in the queue is given by the Pollaczek-Khinchin
(P-K) formula,

W =
λX2

2(1− ρ)

where ρ = λ
µ

= λX. Then the total time spent by a customer in the system on the average is
given by

T = X +
λX2

2(1 − ρ)

By the application of Little’s theorem, the average number of customers in the system and the
average number of customers waiting in the queue are given by

N̄ = λT = ρ+
λ2X2

2(1 − ρ)

N̄q = λW =
λ2X2

2(1− ρ)

respectively.

For exponentially distributed service times, X2 = 2
µ2 and the average time spent by a customer

waiting in queue is given by the same value derived in the previous section for the M/M/1
queue.

W =
2λ

2µ2(1− ρ) =
λ

µ(µ− λ)
=

ρ

µ− λ

62

Chapter 6

Popular Networking Technologies

6.1 Ethernet (IEEE 802.3)

• Ethernet was invented at Xerox Palo Alto Research Centre (PARC) in the mid-1970s to
solve the problem of connecting the computers which Xerox has installed in buildings
which were close to each other. Connecting these computers using telephone lines would
have been expensive so the Ethernet concept was proposed as an cheaper alternative by
Bob Metcalfe.

• 10 Mbps Ethernet standard defined in 1978 by DEC, Intel and Xerox (DIX). This formed
the basis for the IEEE 802.3 standard.

• An Ethernet segment is implemented on a coaxial cable which could be upto 500 m in
length. The cable is called 10Base5 where the ”10” means that the network operates at
10 Mbps, ”Base” means that the baseband signaling is used in the cable and ”5” means
that the segment cannot be longer than 500 m.

• Hosts would connect to the cable using a vampire tap with adjacent taps being at least
2.5 m apart. Multiple Ethernet segments can be joined using digital repeaters upto a
maximum of four such repeaters between any pair of hosts. So the total length of an
Ethernet-based network can be 2500 m.

• Any signal sent on the Ethernet by a host is broadcast over the entire network by the
repeaters. The signaling method used is the Manchester line coding scheme.

• Ethernet can also be implemented on a thinner coaxial cable called 10Base2 where the
maximum segment length is 200 m. But the most common wiring technology used in
Ethernet is 10BaseT where the ”T” stands for the twisted pair of copper wires which
constitute the wiring in this case. The maximum length of an Ethernet segment which
uses 10BaseT is 100 m.

• The common configuration of 10BaseT-based Ethernet is to have several point-to-point
segments coming out of a hub which is nothing but a multiway digital repeater.

• An Ethernet frame consists of the following fields

– A 64-bit preamble which allows the receiver to synchronize to the transmitted signal.
It consists of a sequence of alternating 1 and 0 values.

63

– A 48-bit destination address and a 48-bit source address.

These addresses are globally unique across all Ethernet adapters manufactured in the
world and are referred to as the MAC address of the device. Note that a node can
have multiple Ethernet adapters installed on it and each device will have a different
MAC address. To make sure that every Ethernet device has a unique MAC address,
the first 24 bits correspond to the unique identifier of the manufacturer of the device.
The manufacturer is responsible for ensuring that the remaining 24 bits are unique
for all the adapters it produces.

– A 16-bit packet type field which indentifies which network layer protocol the frame
should be passed to at the destination.

– A data field which consists of 46 to 1500 bytes of data.

– A 32-bit CRC field.

• From the node’s perspective, an Ethernet frame consists of a 14-byte header and the
data. The Ethernet adapters are responsible for adding the preamble and CRC bits before
transmission at the source node and for removing these bits upon reception before passing
it on to the destination node.

• The above description is for a DIX Ethernet frame. The 802.3 frame format differs from
the DIX frame in two ways.

– The preamble consists of 56 bits of alternate 1 and 0 values followed by a 8-bit Start
Frame delimiter having the pattern 10101011. The two consecutive 1 values signal
the start of the frame.

– The 16-bit type field is replaced by a 16-bit length field which gives the length of
the frame. IEEE 802.3 uses a portion of the data field to identify the network layer
protocol to which the frame should be passed to.

• By the time the IEEE 802.3 standard was published, DIX Ethernet was in widespread
use. So interpreting the type field as a length field would have required changes to existing
software and hardware. Fortunately, the type fields used by DIX Ethernet for network
layer protocols all had values greater than 1500 which is the maximum length of the data
field. So a single adapter could accept both types of frame formats if it interpreted the
value in the last two bytes of the header as the type of the network layer protocol if it was
greater than 1500 and as the length of the frame if it was at most 1500.

• An Ethernet adapter recognizes listens to all the frames being sent on the channel and
passes only those frames whose destination address matches its own MAC address to the
node it is attached to. Most adapters can also be placed in promiscuous mode. In this
mode, they pass on all the frames they hear on the channel to the node. If the destination
address in a frame is that of a particular Ethernet adapter it is called a unicast address.
An address which consists of all 1s is called a broadcast address. An Ethernet frame which
has a broadcast address as the destination address will be passed by an Ethernet adapter
to the node even if it is not in promiscuous mode. An address which has the first bit set
to 1 but is not a broadcast address is called a multicast address. A node can program its
Ethernet adapter to accept some set of multicast addresses. Multicast addresses are used
to send frames to a subset of nodes in an Ethernet.

• The MAC protocol used in Ethernet in 1-persistent CSMA/CD, i.e. a node listens to
the channel before transmitting. If the channel is idle, it transmits immediately. If the
channel is busy it waits for the ongoing transmission to complete and then transmits the

64

frame. If it detects a collision, it aborts transmission. We discussed previously that node
has to listen for one whole round-trip time before it can decide that its transmission did
not suffer a collision. But a node listens to the channel only for the duration of the frame
transmission. If the frame is too short then it will stop listening if it does not have other
frames to transmit and may miss the occurrence of a collision. For Ethernet, the maximum
round-trip time in the presence of four repeaters was calculated to be about 50 µs which us
corresponds to 500 bits on a 10 Mbps link. So the minimum length of an Ethernet frame
is chosen to be 512 bits to be on the safe side. This is equal to 64 bytes which is why the
data field has a minimum length of 46 (the header and CRC make up for the remaining 18
bytes). If a node wants to send less than 46 bytes of data, the remaining bits are padded.

• When a collision occurs, the nodes involved in the collision detect it and implement a
backoff algorithm. The time axis is divided into slots of length equal to the maximum
round-trip time. Each node involved in the collision first transmits after 0 or 1 slot times
where the slot they transmit in is randomly chosen. If a collision occurs again, the nodes
involved randomly transmit after 0, 1, 2 or 3 slot times. Thus after the nth collision,
the nodes involved randomly wait for 0, 1, 2, . . . , 2n − 1 slots before transmit. After
ten collisions, the randomization interval is fixed at a maximum of 1023 slots. After 16
collisions, the data link layer gives up and reports an error to the higher layers. This
algorithm is called binary exponential backoff. It can be thought of as an adaptive collision
resolution algorithm which adapts to the number of nodes involved in the collision.

• If a CRC error is detected, the frame is discarded by the destination node. Ethernet does
not use a ARQ protocol. The higher layer protocols are responsible for resending erroneous
frames.

6.2 IEEE 802.11

• The IEEE 802.11 family of protocols are the most popular wireless LAN protocols in use
today. They can operated in two modes - without a base station and with a base station.

• IEEE 802.11 supports six different kinds of physical layers - five of them are based on
spread spectrum modulation and one if based on infrared signals.

• The original 802.11 standard operated at 2 Mbps and defined two physical layers - one
based on frequency hopping spread spectrum (FHSS) and the other based on direct se-
quence spread spectrum (DSSS). The next variant which was developed was 802.11b which
operated at 11 Mbps in the 2.4 GHz unlicensed band and used high rate DSSS.

• The first high-speed wireless LAN standard was IEEE 802.11a which used OFDM signaling
and supported upto 54 Mbps data rate in the unlicensed 5 GHz band. The 5 GHz band
suffers from high signal absorption and so the IEEE 802.11g standard was developed to
operate at 54 Mbps in the 2.4 GHz band.

• IEEE 802.11 supports two modes of MAC layer operation. The first one is called the
Distributed Coordination Function (DCF) and does not require any centralized control.
The other one is called the Point Coordination Function (PCF) and requires a base station
to coordinate all the transmissions among the nodes. All implementations of 802.11 must
support DCF but support for PCF is optional.

• In DCF, the MAC protocol used is CSMA/CA, i.e. carrier sensing along with a RTS-CTS
mechanism to mitigate the hidden node and exposed node problems.

65

• As probability of frame error increases with the size of a frame, a frame can be fragmented
and multiple fragments can be sent after an RTS-CTS exchange.

• In PCF, the base station polls each node asking it if it has any frames to send. Thus the
transmissions from the nodes are completely controlled by the base station avoiding the
possibility of collisions.

• The ARQ protocol used is stop-and-wait ARQ.

66

Chapter 7

Network Layer

While the data link layer was concerned providing error-free communication between adjacent
nodes, the network layer is the lowest layer which is concerned with end-to-end communication
between possibly non-adjacent source and destination nodes. The main issues handled by the
network layer are the following.

• Internetworking: The network layer enables internetworking, i.e. the seamless intercon-
nection of heterogeneous networks. This makes communication between nodes connected
to different networks possible. The most successful network layer protocol is the Internet
Protocol (IP) which enables internetworking on the Internet by the encapsulation of IP
packets within the frames of different networks.

• Routing: The network layer handles the tasks of discovering routes from source to desti-
nation nodes and selecting the best routes among multiple alternatives.

• Congestion avoidance: The network layer is also responsible for preventing congestion in
the network, i.e. buffer overflows occurring anywhere in the communication network. This
is different from flow control where the goal is to prevent a single source from overflowing
the buffer at a particular destination.

As discussed in Section 2.3, the Internet Protocol (IP) which is the mainstay of the TCP/IP
protocol suite will be used to illustrate the functionalities of the network layer. This is in contrast
to our coverage of the physical and data link layers where our discussion was more generic.

7.1 Internetworking

An internetwork or internet (note the lowercase i) is a collection of networks which have been
interconnected to provide communication between any two arbitrary nodes in any of the con-
stituent networks. In this context, a network is defined to be a directly connected collection of
nodes which use the same physical and data link layer technologies for communication between
them. The networks constituting an internet are hetergeneous, i.e. they use different physical
layer signaling formats, different data link layer frame structure, addresses etc. For example, an
Ethernet-based network could be connected to a 802.11 network to form an internet. Ethernet
segments connected by repeaters are not considered to form an internet. Another example is a
company connecting the Ethernet networks existing in their branch offices in Delhi and Mumbai

67

with a point-to-point link leased from a telephone company. Although, in this case the networks
being connected employ the same technology (Ethernet) this is considered an internet because
the point-to-point fiber optic link uses a different physical and data link layer technology. The
nodes which interconnect the networks in an internet are called routers. Routers need to have
an network adapter for each kind of network they are connected to.

The Internet Protocol (IP) is the most successful technology today for building scalable, heterge-
neous internetworks. The key idea is to assign an IP address to all the nodes in an internetwork
and embed IP packets within the frames used by the different constituent networks. Consider
the example of a source node on an Ethernet network A wanting to communicate with a destina-
tion node on an Ethernet network B when both the networks are connected by a point-to-point
fiber optic link. The source node encapsulates its payload in an IP packet and embeds the IP
address of the destination node as the destination address in the header of the IP packet. This
source node passes this IP packet to its Ethernet adapter. The Ethernet adapter encapsulates
the IP packet in an Ethernet frame and sends it to the Ethernet adapter of the router which
acts as the interface between the network A and fiber optic link. The router extracts the IP
packet from the received Ethernet frame and looks at the destination IP address. Upon finding
the destination IP address to be equal to that of a node reachable through its fiber optic link, it
encapsulates the IP packet into a frame corresponding to the fiber optic technology and sends
it to the router on the other side of the fiber optic link which is directly connected to network
B. The router connected to network B extracts the IP packet from the received frame. Upon
finding the destination IP address to be that of a node reachable through its Ethernet interface,
it embeds the IP packet in an Ethernet frame with the destination MAC address equal to the
MAC address of the destination node and transmits it on network B.

This method of forwarding packets follows the datagram or connectionless model of data delivery
where every packet contains sufficient information to allow the network to forward it to the
correct destination. This is in contrast to a connection-oriented model where an advanced
connection setup between the source and destination is required before packets can be forwarded.
The advantage of the latter is that packets will arrive in the order they were sent and each
packet needs to have only the identity of the connection it belongs to, which can be a stored in a
much smaller field than the destination address. Of course, the overhead and delay involved in
connection setup is a disadvantage of the connection-oriented model. The data delivery model
of IP is a best effort or unreliable service because it does not react to failures in delivery like
packet loss, corruption and misdelivery. Delivery failure also includes situations when packets
are delivered out of order or more than once. The responsibility of handling such failures rests
on the higher-layer protocols or applications.

IPv4 Packet Structure

The current version of IP is 4 and it called IPv4. The next generation of IP has version number
6 and is called IPv6. It is discussed later in this chapter. The IPv4 packet structure is shown
in Figure 7.1 where each row corresponds to 32 bits or one word. The numbers above the first
first row indicate the bit offset of the fields beginning at that position. The packet consists of
the following fields.

• Version The first header field in an IP packet is the 4-bit version field. For IPv4, this
field has the value 0100 corresponding to the integer value 4. Having the version field right
at the beginning makes the implementation of the packet processing system simpler. The

68

Version HdrLen TOS Length

Identification Flags Offset

TTL Protocol Checksum

Source Address

Destination Address

Options (variable length)

Data

0 4 8 16 19 31

Figure 7.1: IPv4 packet structure

processing of the packet can be different depending on the version.

• Header Length The second field is the 4-bit header length field which specifies the length
of the header in 32-bit words. The minimum value of this field is 5 which corresponds to
a 160-bit header (5× 32).

• TOS The 8-bit Type of Service (TOS) field was originally intended to be used by a source
of the packet to specify how it should be handled at a router. Now the meaning of the bits
in this field has changed and the field is referred to as the Differentiated Services (DiffServ)
field. The first two bits are reserved for use by the Explicit Congestion Notification (ECN)
protocol and the last six bits are reserved for use by the DiffServ protocol.

• Length The next 16 bits of the header contain the length of the IPv4 packet in bytes of
the header and the payload. Thus the maximum length of the packet can be 65,535 bytes.

• Identification The first 16 bits of the second word of the header contain an identification
field which is used for identifying the fragments of an IP packet. Fragmentation is discussed
in detail in a later section.

• Flags The next 3 bits contain flags which are used to implement the fragmentation algo-
rithm.

• Offset The remaining 13 bits which make up the second word of the header contain the
offset of a particular fragment relative to the beginning of the original unfragmented packet
measured in eight-byte blocks. So the maximum offset can be (213 − 1)× 8 = 65, 528.

• TTL The first 8 bits of the third word of the IPv4 header contain the Time To Live (TTL)
field. This field is decremented each time a router receives the packet and the packet is
dropped once the field becomes zero. This is to prevent IP packets from being routed
indefinitely in an internet. Historically this field was set to a certain number of seconds
that a packet would be allowed to live. However, since routers do not have access to a
common clock they just decrement the field by 1 before forwarding the packet. So this
field has in effect become a hop count field. The default value of this field is 64.

• Protocol This 8-bit field specifies the transport layer protocol to which the IP packet
should be passed to. This field has value 6 for TCP and value 17 for UDP.

• Checksum The 16-bit checksum is calculated by grouping the header bits into 16-bit
words, taking their 1’s complement sum and taking the 1’s complement of the result. A

69

odd number of bit errors in any of the 16 positions can be detected using this checksum.
This checksum does not have the same error detection capabilities as a CRC but it has an
easy software implementation.

• Source Address The next header field contains the 32-bit IPv4 address of the source
node.

• Destination Address The next header field contains the 32-bit IPv4 address of the
destination node. This is the last field which is required to be present in any IPv4 packet
header.

• Options Additional optional header fields may be present in the IPv4 header. These
are usually not present and are used only for debugging and measurement purposes. De-
tails can be found in RFC 791 http://www.rfc-editor.org/rfc/rfc791.txt. Also see
http://en.wikipedia.org/wiki/Request for Comments to know more about RFCs in
general.

Internet Checksum

The checksum used in the IPv4 header is called the Internet checksum. The same algorithm is
also used in TCP and UDP. In this algorithm, the bits to be checksummed are grouped into
16-bit words and their 1’s complement sum is calculated. The 1’s complement of this sum then
gives the checksum. For example, suppose we want to calculate the Internet checksum of the
following 32 bits : 11111110 11001000 00000010 00010011. We add the first 16 bits to the second
16 bits using 1’s complement arithmetic where it is necessary to add the carry back to the sum
of the bits. The checksum is then given by the 1’s complement of the sum as 11111111 00100011.

11111110 11001000
00000010 00010011

1 00000000 11011011
1 Adding carry bit

00000000 11011100 1’s complement sum

Since the checksum field is part of the IP header, it is set to all zeros for the calculation of the
Internet checksum. It is then filled with the resultant checksum. To verify the checksum at a
receiver, the 1’s complement sum of the IP header is recalculated. If it equals all 1’s, then no
errors have been detected.

IP Fragmentation and Reassembly

Different network technologies specify a different maximum payload length they can support in a
single frame. This specifies the maximum transmission unit (MTU) of the network which is the
largest IP datagram which the network can carry in a frame. For example, the MTU in Ethernet
is 1500 bytes long while in 802.11 it is 2304 bytes long. Since an internet can consist of networks
which support different MTUs, there can be two approaches to enabling internetworking using
IP. The first approach is to choose the size of the IP datagrams to be small enough to fit in
one frame of any of the network technologies used in the internet. The second approach is to
allow fragmentation of IP datagrams when they cannot fit in the frame of a particular network

70

technology. The latter approach seems to be more efficient as the source does not needlessly
send small IP datagrams which increase the amount of overhead sent as headers. The fragments
of an IP datagram are reassembled at the destination.

Fragmentation is typically performed by a router when it receives an IP datagram which needs
to be forwarded over a network whose MTU size is smaller than the size of the datagram.
When the datagram is broken into fragments, the IP header of the datagram is added to all the
fragments. The identification field in the original datagram is chosen by the source node and is
used at the destination to identify all the fragments of a datagram. The 3-bit flags field plays a
special role in the fragmentation process. One of the bits is reserved and always set to 0. One of
the other two bits is the More Fragments (MF) flag which is set to 1 in all the fragments except
the last one. It is also set to 0 in unfragmented IP datagrams. The third flag bit is called the
Don’t Fragment (DF) flag which is set to 1 by the source if it does not want the datagram to be
fragmented. This is used to send packets to a destination which does not have the capability or
resources to handle the reassembly process. If a datagram with the DF flag set to 1 is received
at a router and fragmentation is required to send it across the next hop, then the datagram is
dropped.

Fragmentation occurs at 8-byte boundaries and the offset field in the header of a fragment
specifies the offset of the current fragment relative to the beginning of the original datagram.
For example, suppose a 1420 byte datagram which has 1400 bytes of data and 20 bytes of header
arrives at a router and needs to be sent over a network which has an MTU of 532 bytes. An
MTU size of 532 bytes allows for a 512 byte data portion after 20 bytes are taken up by the IP
header. So the first fragment contains the first 512 bytes of the 1400 bytes of data in the original
datagram. The header of the first fragment is identical to the header of the original datagram
except that the MF flag is set to 1. The offset field in the original datagram is zero since it is
unfragmented and the offset field in the first fragment is also zero. The second fragment also
contains 512 bytes of data which corresponds to bytes 513 to 1024 in the original 1400 bytes of
data. The header of the second fragment is the same as that of the first fragment except that
the offset field is set to 64 which is 512 divided by 8. The third fragment has the remaining 376
bytes of data and the header is identical to that of the other fragments except that the MF flag
is set to 0 and the offset field is set to 128 which 1024 divided by 8.

The fragment reassembly process can consume significant memory resources at the destination
if some of the fragments are lost. This is because the destination has to reserve memory for
the fragments which have arrived while waiting for the lost fragments to be retransmitted. This
phenomenon has been the basis of a denial-of-service attack where an attacker sends several IP
datagrams with the MF flag set to 1. The receiving nodes keeps allocating memory to store these
datagrams while it waits for the fragment with the MF bit set to 0 to arrive eventually resulting
in a buffer overflow. For this reason, IP fragmentation is generally avoided. An alternative
to fragmentation is to have the source node perform path MTU discovery where the smallest
MTU in the path from source to destination is calculated. In this protocol, the source node
sends an echo packet to the destination where the size of the echo packet is equal to the MTU
of the network the source is directly connected to. This packet also has the DF flag set to 1
in its header. If the echo packet returns successfully, the MTU size is small enough to reach
the destination without fragmentation. If the echo packets encounters a network with a smaller
MTU size, the router attached to the network sends an error message back to the source. The
source then reduces the size of its echo packet and tries again.

71

IP Address Notation

The IP address is a network layer address which has no relation to the MAC addresses used in
the data link layer. It is 32 bits long in IPv4 and 128 bits long in IPv6.

IPv4 addresses are written in dotted decimal notation. In this notation, each 8-bit byte in the
32-bit address is written as an integer between 0 and 255. For example, the IPv4 address 0000
1010 0110 1011 0000 0001 0000 0001 written as 10.107.1.1.

IPv6 addresses are written in hexadecimal notation where the 128-bit address is written as
32 hexadecimal digits where groups of four hexadecimal digits are separated by colons. Two
examples of IPv6 addresses are the following.

FE80:AB89:200A:ABCD:EFAB:1234:5678:9ABC

FE80:0000:0000:0000:0000:0250:56FF:FEC0

Since these addresses are long, a common way to abbreviate them is for a group of four hex-
adecimal digits to leave out leading zeros and for groups containing four zeros to be represented
by a single zero. As long as there is no ambiguity, a long string of zeros in the IPv6 address
can be replaced by a double colon (::). The first example of an IPv6 address above cannot be
compressed but the second example can be written as

FE80::250:56FF:FEC0.

A double colon can appear only once in an IPv6 address. To see what can go wrong, consider
the IPv6 address

FE80:0000:0000:56FF:0000:0000:0000:FEC0.

If we compress this address as FE80::56FF::FEC0 using two double colons, we cannot uncom-
press it unambiguously because we do not know how many of the 5 groups of missing zeros
need to be inserted to the left of 56FF and how many to the right of 56FF. The correct way to
compress this address is to write it as FE80:0:0:56FF::FEC0 or FE80::56FF:0:0:0:FEC0.

Network and Host Portions of IP Addresses

While the MAC address is assigned to a network adapter by the manufacturer and cannot be
changed, the IP address can be configured by the system administrator or user. While the only
restriction on MAC addresses was that they be unique, IP addresses are required to have a
hierarchical structure in addition to being unique. Each IP address assigned to a node1 has
two parts: a network part and a host part. The network part is the same for all the nodes
connected to a single physical network and is used to identify the network. The host part is
used to identify the node in the network. This hierarchical structure helps reduce the size of
the routing tables and also makes packet forwarding easier. For example, two nodes connected
to the same physical network can have IP addresses 10.107.1.1 and 10.107.1.2 where the first
three bytes form network portion of their IP addresses (10.107.1) and the last byte forms the
host portion of the IP address.

When an IP packet is received at a router it checks if the network portion of the destination IP
address in the packet matches the network portion of any of the IP addresses assigned to each

1Note that the IP address is assigned to a particular network adapter on the node since the node can have
multiple network adapters

72

of its network interfaces. If a match is found, then the destination node is directly connected to
one of the interfaces of the router. The router then sends the packet directly to the destination
using that interface. If a match is not found, then the destination node is not present on any
of the networks the router is directly connected to. Then the router looks in its routing table
to find the next hop router for the particular network portion of the destination address in the
packet. If the routing table does not contain an entry corresponding to the network portion in
the packet, then the packet is forwarded to a default router which then assumes the responsibility
of delivering the packet to the destination. This method of matching only the network portion
of the destination address has the advantage that the routing tables only have to contain entries
corresponding to networks rather than all the nodes in the internetwork.

Address Resolution Protocol (ARP)

In the previous subsection, we said that a router sends an IP packet directly to the destination
node if it finds that the network portion of the destination IP address matches the network
portion of the IP addresses assigned to one of its interfaces. But to send a packet to a particular
destination node, the router needs to know the MAC address, i.e. the data link layer address
of that node so that the packet can be embedded in a frame which has that particular MAC
address as the destination address. Even when the packet has to be sent to a next hop router or
default router, the MAC addresses of these routers are needed. So each node has to maintain a
table of mappings from IP addresses to MAC addresses. While this table can be loaded into the
nodes by the system administrator, a better approach is to have the nodes dynamically learn
the entries in the table. This is done using the Address Resolution Protocol (ARP). The set
of mappings stored in a node is called the ARP cache or ARP table. Since the mappings can
change over time, each entry in the ARP cache has a timer associated with it. When ARP
entries have not been updated for a while, their timers expire and they are removed.

ARP takes advantage of the fact that many data link layer technologies support broadcast.
When a source node wants to send an IP packet to a destination it knows is connected to the
same network it is connected to, it first checks the ARP cache for a mapping. If the mapping is
not present, it broadcasts an ARP query into the network. In Ethernet, this is done by setting
the destination MAC address to be all 1s. The ARP query has the IP address of the intended
destination. Each node in the network receives the ARP query and checks if the IP addresss
in the query matches its own IP address. If there is a match, the destination sends a response
containing its MAC address back to the source node. The source node maps the received MAC
address to the IP address and adds this mapping to the ARP cache. The ARP query contains
the IP address and MAC address of the source node. So every node which receives the query
can add this mapping to its own ARP cache. But this is not what happens. If a node already
has a mapping for the source node, it refreshes the mapping, i.e. it replaces the mapping if it
has changed and in the case of no change it resets the timer which will remove the mapping
on expiry. If a node does not have a mapping for the source node, it adds the mapping only if
it is the target of the ARP query. This is because it is highly likely that the destination node
would have to send a response or an acknowledgement back to the source node and will need
the source’s MAC address. If a node is not the target of the ARP query it does not add a
mapping for the source node to its ARP cache because there is not enough reason to believe
that it will have to send a packet to the source node in the near future and adding the mapping
will unnecessarily clutter the ARP cache.

73

Class Initial bits Num. of addresses % of address space NetID HostID

Class A 0 231 50% 8 bits 24 bits

Class B 10 230 25% 16 bits 16 bits

Class C 110 229 12.5% 24 bits 8 bits

Class D 1110 228 6.25% - -

Class E 1111 228 6.25% - -

Table 7.1: IPv4 classful addressing scheme

IPv4 Addressing

The original IPv4 addressing scheme was called the classful scheme because it divided the 32-bit
address space into classes based on the value of the initial bits in the IPv4 address. The first
three classes also defined the number of address bits which are assigned to the network and the
host portion of the IP address. This is shown in Table 7.1. Class A addresses have their first bit
set to 0, class B addresses have their first two bits set to 10, class C addresses have their first
three bits set to 110, class D addresses have their first four bits set to 1110 and class E addresses
have their first four bits set to 1111. Class A, B and C addresses can be assigned to nodes
while class D addresses are assigned to multicast groups and class E addresses are reserved for
experimental purposes and seldom used. Class A networks have 7 bits for the network part (the
first bit in the 8-bit network part is set to 0) and 24 bits for the host part. So there can be
27 = 128 class A networks. But there are actually 126 such networks because the values 0 and
127 in the network part of the address are reserved. Each class A network can have 224−2 hosts
(again the all 0s and all 1s host parts are reserved). Similarly each of the 214 class B networks
can have 65,534 hosts and each of the 221 class C networks can have 254 hosts.

The problem with the classful addressing scheme was that each network part was supposed to
identify exactly one physical network. This meant that the address space would be severely
underutilized if the number of hosts in a physical network did not match one of the three classes
available. For example, a physical network with two nodes would require a whole class C network
resulting in the other 252 IP addresses remaining unused. The underutilization was more severe
if a physical network had slightly more than 254 nodes because in that case the address space of
a class B network would be required and more than 65,000 IP addresses would remain unused.

Today IPv4 addresses are interpreted in a classless manner. In classless addresssing, the bound-
ary between the network and host portions of the IPv4 address is determined by the IPv4
network mask or network prefix and not by the initial IP address bits. The network mask or
prefix is a string of bits as long as the IP address. For IPv4, the network mask is 32 bits long.
The mask consists of a sequence of 1s followed by certain number of 0s. The bit positions which
are set to 1 determine the network portion of the IP address. The network mask can also be
written in dotted decimal notation for IPv4 addresses. For example an IPv4 address 10.107.1.1
with network prefix 255.255.255.0 tells us that the network portion of the address consists of
the first three bytes (24 bits) 10.107.1 and the hosts on this network can have addresses in the
range 10.107.1.1 to 10.107.1.254. The address 10.107.1.0 is used to represent the network and
the address 10.107.1.255 is used as a network layer broadcast address. The classes A, B, C had
networks masks 255.0.0.0, 255.255.0.0 and 255.255.255.0 respectively. Since the numbers of 1s
in the network mask uniquely defines it, a network IP address with a mask can be written in
the format network id/prefix length. In our above example, we can write the network address
along with the three byte prefix as 10.107.1/24 or 10.107.1.0/24.

74

The classless method of interpreting IP addresses allows the use of two techniques which result
in better utilization of the IP address space and also improve routing scalability: subnetting and
supernetting. Subnetting involves sharing the host IP addresses corresponding to a single network
address among multiple physical networks. These physical networks are called the subnets of
the original network. The key idea is to configure all the hosts in a subnet with a network mask
which in this context is also called the subnet mask. While the restriction in classful addressing
was that all the nodes in the same physical network need to have the same network address,
in classless addressing with subnetting all the nodes in the same physical network need to have
the same subnetwork address which is the bitwise AND of the node IP address and the subnet
mask. For example, suppose we have two physical networks with 100 nodes each. With the
classful addressing scheme, we would have to allocate two different class C network addresses
to each of the networks. But with subnetting we can use a single class C network address
with a subnet mask of 255.255.255.128. Suppose the class C network address is 192.83.12.0.
The hosts in such a network can have IP addresses in the range 192.83.12.1 to 192.83.12.254.
Then one of the physical networks can have the subnetwork address 192.83.12.128 and have
host IP addresses in the range 192.83.12.129 to 192.83.12.254. The other physical network can
have subnetwork address 192.83.12.0 and have hosts IP addresses in the range 192.83.12.1 to
192.83.12.126. While this solves the problem of address space underutilization, it helps routing
scalability if the subnetworks are close to each other. If they are close, they could both interface
to the outside world through a single router which can advertise a single network address for
both subnetworks. In our example, the network address would be 192.83.12.0 with network
mask 255.255.255.0. This would reduce the routing table size since only one entry needs to be
stored for both the subnetworks.

The other technique is supernetting which is also called classless interdomain routing (CIDR).
Consider a scenario where a university campus network has 16 class C network addresses assigned
to it. Assigning a class B network address to this network will lead to underutilization of
the available host addresses. But having 16 class C network addresses creates the problem of
maintaining 16 entries in the routing tables of the routers in the Internet to reach the nodes on
the campus network even if all the routes are the same. The solution is to allocate a contiguous
block of 16 class C network addresses and use a network mask of 20 bits to identify the campus
network as a single network to the routers on the Internet. For example, if the class C network
addresses allocated are 192.64.16 to 192.64.31 then the first 20 bits of the addresses in this range
are the same (11000000 01000000 0001). So this group of 16 class C networks can be represented
by a single network with network address 192.64.16/20. This will result in an aggregation of the
16 routing table entries into a single entry.

Public and Private IP Addresses

A public IP address is one which is globally unique on the Internet and is assigned to a node by
a central authority or by an Internet Service Provider (ISP) who in turn got it from a central
authority. The Internet Corporation for Assigned Names and Numbers (ICANN) oversees the
allocation of public addresses. The actual allocation is done by Regional Internet Registries
(RIRs) like the American Registry for Internet Numbers (ARIN), Reseaux IP European Net-
work Coordination Center (RIPE NCC), Asian Pacific Network Information Center (APNIC),
Latin American and Caribbean Network Information Center (LACNIC) and African Network
Information Center (AfriNIC).

Private IP addresses are meant to be used only on local networks and are not guaranteed to be
globally unique. For this reason, private IP addresses should not be seen in packets outside a

75

local network. Consequently, private addresses must be mapped to public addresses whenever
a packet with a private source IP address leaves the local network and enters the Internet.
Despite this restriction, private IP addresses are used frequently because they prevent public
IPv4 address exhaustion. Private address spaces for classes A, B and C were defined in RFC
1918 and they are valid under the classles addressing scheme.

• Class A: 10.0.0.0 through 10.255.255.255 (10.0.0.0/8)

• Class B : 172.16.0.0 through 172.31.255.255 (172.16.0.0/12)

• Class C : 192.168.0.0 through 192.168.255.255 (192.168.0.0/16)

Network Address Translation (NAT)

While IPv6 is a long-term solution to the problem of IPv4 address space exhaustion, network
address translation (NAT) emerged as a technology which conserved the IPv4 address space.
The main idea behind NAT is to use private IPv4 addresses for hosts in a local network and
translate these addresses to public IPv4 addresses only when the hosts need to communicate with
external hosts located outside the local network. This translation is done by a NAT server which
is a router acting as the interface between the local network and the outside world. All traffic
between local hosts and hosts outside the local network has to pass through the NAT server.
The main function of the NAT server is to translate the private IPv4 addresses in the outgoing
packets to globally unique public IPv4 addresses and the globally unique IPv4 addresses in the
incoming packets to private IPv4 addresses which identify hosts on the local network.

There are several types of NAT implementations but the two which have resulted in the con-
servation of the IPv4 address space are dynamic NAT and port-based NAT. In dynamic NAT, a
small set of public IPv4 addresses are shared by a larger set of hosts for communicating with the
outside world. For example, consider a local network consisting of 200 hosts that uses private
addresses in the range 10.107.1.0/24. Suppose these hosts use dynamic NAT to share a pool of
20 public IPv4 addresses in the range 192.83.12.1 to 192.83.12.20. When a host with IP address
10.107.1.1 wants to communicate with a website with IP address 250.110.11.5 located outside
the local network, it sends an IP packet with source address 10.107.1.1 and destination address
250.110.11.5 to the NAT server. The NAT server replaces the source IP address with a public
IP address, say 192.83.12.7, from the pool of 20 IP addresses, recalculates the IP checksum and
forwards the modified IP packet to the website. When the NAT server receives a response IP
packet from the website with destination IP address 192.83.12.7, it replaces the destination IP
address with the IP address 10.107.1.1 and forwards it to the original source host on the local
network. The mapping of local host IP addresses to global IP addresses in the shared pool is not
fixed and changes according to which IP addresses are available at a particular time. Dynamic
NAT is based on the observation that all hosts on a local network may not want to communicate
with external hosts at the same time. If this observation does not hold, the alternative is to use
port-based NAT. Port-based NAT is based on the fact that most transport layer protocols like
TCP and UDP use a port number to identify a process running on a host. This port number
is used to demultiplex packets which are received at a destination host to different processes
which are running on the host. For example, a host might be running a web browser and an
FTP client at the same time which are both receiving packets. A port number in the transport
layer header distinguishes the packets which need to be passed to the web browser and the
FTP client. The port number is a 16-bit field and hence can take values from 0 to 65,535. In
port-based NAT, the NAT server replaces the source IP address and port number with a public

76

IP address and an arbitrary port number which is unique to the host on the local network in all
the outgoing packets. When an incoming packet has the public destination IP address and port
number corresponding to a local network host the NAT server it replaces these fields with the
private IP address and original port number. For example, consider a local network of 200 hosts
that uses private addresses in the range 10.107.1.0/24. Suppose these hosts use port-based NAT
to share a single IP address 192.83.12.1. Suppose an FTP client on a local host with IP address
10.107.1.1 wants to send communicate with a website with IP address 250.110.11.5. The local
host sends a packet with source IP address 10.107.1.1 and source port number 21 (corresponding
to FTP) to the NAT server. The NAT server replaces the source IP address with IP address
250.110.11.5 and source port with an arbitrary port number, say 12345, which it will reserve
for this particular local host. It will have to recalculate the IP/TCP checksums before sending
the IP packet. When the response IP packet from the website arrives at the NAT server with
destination IP address 250.110.11.5 and destination port 12345, the NAT server replaces the
destination IP address with the value 10.107.1.1 and destination port with the value 21 and
passes the packet to the local host 10.107.1.1. In this way, dynamic NAT and port-based NAT
enable the sharing of a small number of public IP addresses by a large number of hosts.

Dynamic Host Configuration Protocol (DHCP)

All the hosts in an internetwork need to be assigned a unique IP address with the restriction that
the network portion of the IP address is the same for all hosts connected to the same physical
network. One way to configure the IP addresses on hosts is to have a system administrator
manually configure them. But this is a time-consuming task especially because the hosts are
not reachable through the network before they have been configured. Manual configuration is
also prone to errors like two hosts being configured with the same IP address because it is very
easy for humans to confuse two IP addresses. In addition, to the IP address other parameters
like the subnet mask and default router’s IP address need to be configured in the host before it
can commence communication.

DHCP is a method to perform automatic initial configuration of the hosts in a network. It is
implemented using a DHCP server that is responsible for providing configuration information
to hosts. Whenever a host boots up or gets connected to the network it retrieves configuration
information from the DHCP server. In the case of IP addresses, one way is to have a mapping
from IP addresses to host MAC addresses in the DHCP server so that when a host requests the
server for its IP address its MAC address is used by the server to find the appropriate IP address.
But in this method the system administrator has to manually create the table of mappings. A
simpler method to configure IP addresses is to have a pool of IP addresses stored in the DHCP
server which are assigned to hosts on demand. In this method, the exact IP address which
will be assigned to a host is not known beforehand. However, in both methods the host has
to know the IP address of the DHCP server before it can send a request. If each host has to
be manually configured with the IP address of the DHCP server, this would defeat the purpose
of automatic configuration. Sending a broadcast data link layer frame will not be sufficient
because the DHCP server may not be located on the same physical network. The solution is to
have a newly booted or connected host to send a DHCPDISCOVER message to the special IP
address 255.255.255.255 which is an IP broadcast address. This message is embedded in a data
link layer broadcast frame. An IP packet with destination address equal to the IP broadcast
address will be received by all the hosts and routers in a network. If the DHCP server is not
directly connected to the network, one of the routers in the network is configured to be a relay
agent. The relay agent is configured with the IP address of the DHCP server. When the relay

77

agent receives a DHCPDISCOVER message it unicasts it to the DHCP server and forwards the
server’s response to the requesting host. The server’s response contains the requesting host’s
MAC address, the IP address which the server is offering, the subnet mask, the lease duration
of the IP address and the IP address of the DHCP server. The purpose of the lease is to make
sure that hosts do not occupy IP addresses indefinitely even when they do not need them. The
hosts cannot be given the responsibility of giving back the IP addresses assigned to them to the
DHCP server because they might crash, be disconected from the network or powered off. So by
imposing a lease on an IP address, the server is free reclaim the address once the lease expires.
A host will have to renew its lease periodically if it wants to continue using the IP address.

7.2 Routing

As the size of a network grows, many pairs of nodes will not be directly connected to each other
and will depend on intermediate nodes to relay packets between them. A sequence of relay
nodes which transfer information between a source-destination node pair is called a route. Each
node in the network has a routing table which consists of a list of mappings from IP addresses
to next hop nodes. The next hop node corresponding to an IP address is the node to which
a packet destined for that address should be forwarded to. To reduce the size of the routing
tables, whenever possible the mapping is from network IP address to a next hop node, i.e. if
all the nodes with the same network portion of the IP address are reachable through the same
next hop node then only one mapping is added in the routing table for all of them. Every node
also has a forwarding table which consists of a list of mappings from IP addresses to outgoing
network interfaces along with the MAC address of the next hop node.

Routing is the process of constructing the routing tables in a network such that packets ex-
changed between pairs of nodes take paths which have lowest cost among all available paths.
Routing is accomplished by a routing algorithm which is typically a distributed algorithm in-
volving all the nodes in the network. The main reason for the distributed nature of most routing
algorithms is that centralized routing algorithms are not scalable. There are two main classes of
routing protocols: distance vector and link state routing protocols. These protocols are easily
illustrated using the graphical model of a network where nodes are represented by vertices on
a graph and communication links are represented by edges in the graph. Each edge has a cost
associated with it and the goal of the routing algorithm is to find the lowest cost path between
any pair of nodes.

Routing in internetworks differs from routing in the graphical model in the fact that the routers
participating in the routing algorithm advertise costs of reaching networks rather than hosts.
This has the advantage of reducing the number of entries in the routing table.

Distance Vector Routing Protocol (DVRP)

The main idea behind DVRP is that each node constructs a vector containing the shortest
distances from itself to all the nodes it knows are reachable from it and distributes this vector
to its immediate neighboring nodes. The assumption is that a node knows which nodes are
its immediate neighbors and also the costs to these neighboring nodes. The neighboring nodes
upon receiving the distance vector update their own distance vectors if they find shorter routes
to nodes which are reachable from them or if they find that new nodes which are not present in
their distance vector.

78

A

B

C

D

E

(a) A five-node communication network

A’s routing table

RN NH RC

B B 1

C C 1

A’s routing table

RN NH RC

B B 1

C C 1

D B 2

A’s routing table

RN NH RC

B B 1

C C 1

D B 2

E C 2

(b) Illustration of the evolution of the routing table of node A where RN, NH and RC are
abbreviations of reachable node, next hop and routing cost, respectively. The routing cost
is the hop count here. The leftmost table is A’s initial routing table, the middle table is
A’s routing table after it receives B’s distance vector and the rightmost table is A’s routing
table after it receives C’s distance vector.

Figure 7.2: Illustration of distance vector routing

For example, consider the five-node network shown in Figure 7.2a. Suppose each edge has unit
cost which corresponds to the hop count being chosen as the routing metric. Initially node A’s
routing table only has the entries corresponding to its immediate neighbors B and C. Suppose
it receives B’s distance vector which contains a path to node D at cost 1. Then it adds an entry
for node D with next hop B and cost 2 since it can reach node B with cost 1. Next node A
receives C’s distance vector and adds an entry corresponding to node E with next hop C and
cost 2 since it can reach node E with cost 1. A similar process happens at all the nodes which
send their distance vectors and update their routing tables upon receiving the distance vectors
from their neighbors. If the routing tables at all the nodes stabilize and contain a consistent
view of the network, the routing algorithm is said to have converged.

Each node sends its distance vector to its neighbors periodically resulting in a periodic update
even when there are no changes in its routing table. When a change occurs in a node’s routing
table it immediately sends its new distance vector resulting in a triggered update. The periodic
update is useful in identifying a node failure which can be characterized by the absence of the
periodic update message in the last few update cycles. This routing protocol has the ability
to recover from some node or link failures. Suppose the link from B to C in goes down in the
network shown in Figure 7.2a. Then B advertises a distance of infinity to C and node D sets
its distance to C to infinity because it knows that its path to C is through B. However, A
advertises a unit distance to C and B updates its routing table to have a path to C through
A having cost 2. Eventually D also updates its routing table to have a path to C through B
having cost 3. Thus the routing algorithm converges.

However, some link failures can prevent the distance vector routing algorithm from converging.
For example, consider the case when the link from C to E fails or equivalently the case when
node E fails. Before the failure, nodes A, B and C have routing costs 2, 2 and 1 to node E
respectively. After the failure, node C sets its routing cost to node E to infinity. But suppose
node A advertises a cost of 2 to reach E before getting the distance vector from C. Then node

79

B believes that it can reach E through A at a cost of 3. It then advertises this to C who then
believes that it can reach E through B at a cost of 4. When C advertises this to its neighbors,
A updates its cost to reach E to 5. Then B updates its cost to reach E to 6 and so on. This
cycle of updates stops only when the costs become large enough to be considered infinite. This
is called the count to infinity problem.

One solution to the count to infinity problem is to set a relatively small cost as infinity. For
example, if we set 16 to be infinity then the nodes will count to 16 fairly quickly and realize that
there is no path to the node which failed. This will work only if the maximum number of hops
in a network is 16. Another technique to solve this problem is called the split horizon. In this
technique, when a node sends a distance vector to its neighbors it does not send those routes
which it learned from a neighbor back to that neighbor. A variation of the split horizon method
is called split horizon with poison reverse where a node does send back routes learned from a
neighbor back to that neighbor but advertises an infinite cost for such routes. Unfortunately,
both the split horizon techniques work only for routing loops that involve two nodes.

Link State Routing

In link state routing, every node constructs a packet containing the cost of reaching its immediate
neighbors and sends it to all the nodes in the network. Once again the assumption is that each
node can discover its immediate neighbors and the costs to each of them. The packet which is
sent by each node is called its link state packet (LSP). Once a node has received the LSPs from
all the other nodes in the network it will have enough knowledge to build a complete routing
map of the network.

The difference between distance vector routing and link state routing is that in distance vector
routing each node sends information only to its immediate neighbors but the information sent
is contains the list of all nodes reachable from it while in link state routing each node sends
information to all the other nodes in the network but the information sent is only about its
immediate neighbors.

The method used to distribute the LSPs from each node to all the other nodes in the network
is called reliable flooding. In reliable flooding, each node sends the LSP to all its immediate
neighbors and the neighbors then forward the LSP to all their immediate neighbors and so
on. Each node receiving an LSP makes sure that the LSP is not forwarded back on the link
it was received on. For example, in the network shown in Figure 7.2a if node B receives an
LSP from node A it will forward it only to nodes C and D. Nodes use acknowledgements and
retransmissions to make sure that LSPs are received reliably.

Each LSP contains the following

• A unique identifier of the node which created the LSP

• A list of immediate neighbors of that node along with the cost of reaching each one of
them

• A sequence number

• A time to live (TTL) for the LSP

The first two fields enable the calculation of the routes. The last two fields help make the
flooding process reliable and efficient. Every time a node receives an LSP it decrements the

80

TTL field before forwarding it to its neighbors. This ensures that old link state information is
eventually removed from the network. Each time a node generates a new LSP it increments the
sequence number by one. This sequence number is used to ensure that all the nodes use the
latest link state information to build their routing maps. For example, when node A receives
node B’s LSP it checks to see if it already has a copy of an LSP from node B. If it does not,
it stores the LSP it just received. If it does have a copy, it compares the sequence numbers in
the stored and received LSPs. If the received LSP has a lower sequence number it is dropped.
If the the stored LSP has a lower sequence number it is replaced with the received LSP. As in
distance vector routing, each node generates LSPs either when a periodic timer expires or when
a change in topology occurs.

Once a node has all the LSPs from all the other nodes it will be able to calculate the complete
routing map of the network and use this map to decide the best route to each destination. The
calculation of the routes is done using Dijkstra’s shortest-path algorithm. In graph-theoretic
terminology, the algorithm can be explained in the following manner. Let N be the set of nodes
in the graph and let l(A,B) be the cost associated with the edge between any nodes A and B
in the network. We set l(A,B) =∞ if no edge connects nodes A and B. Let S ∈ N be a node
which has received the LSPs from all the nodes in the network. We want to calculate CS(X),
the cost of the shortest path from S to X for all nodes X ∈ N . The algorithm is as follows:

M = {S}
for each X in N − {S}

CS(X) = l(S,X)
if CS(X) <∞, next hop for X is X itself

while (N 6= M)
M = M ∪ {Y } such that CS(Y) is the minimum among all Y in (N −M)
for each X in (N −M)

CS(X) = min{CS(X), CS(Y) + l(Y,X)}
if CS(X) has changed, next hop for X is the next hop to reach Y from S

At any point in the execution of the above algorithm, M denotes the set of nodes which have
been incorporated in the calculation of the shortest paths from S to all the other nodes in the
network. The algorithm begins by setting M to be equal to S and then initializing the costs of
the shortest paths using the known costs to the immediate neighbors. During this initialization,
CS(X) = ∞ for any X which is not an immediate neighbor of S. Then the node Y which is
reachable with the lowest cost from S and is not yet in M is added to M . The costs of reaching
all the nodes in N −M are updated using the cost of reaching nodes through Y if this cost is
smaller than the previous cost calculated. We also need to keep track of the next hop nodes as
the algorithm progresses.

For example, consider the four node network shown in Figure 7.3a. Suppose node A has received
LSPs from the the nodes B, C and D. Figure 7.3b shows the evolution of the link state routing
table as node A runs Dijkstra’s algorithm. In the table, the last three columns contain the cost
and next hop for reaching the nodes B, C and D respectively. The second and third columns
contain the sets M and N −M at each step in the algorithm.

Interdomain Routing

An internetwork which is under the control of a single administrative entity is called an au-
tonomous system (AS). An AS is also called a routing domain because the administrative entity

81

A

B

C

D

11

2

5

3

10

(a) A four-node communication network

Step M N −M B C D

1 {A} {B,C,D} 11,B 2,C ∞,-

2 {A,C} {B,D} 5,C 2,C 12,C

3 {A,B,C} {D} 5,C 2,C 10,C

4 {A,B,C,D} {} 5,C 2,C 10,C

(b) Illustration of the evolution of the link state routing table of node
A as it runs Dijkstra’s algorithm

Figure 7.3: Illustration of link state routing

is free to choose the routing protocol which will run within the AS. The distance vector and link
state routing protocols are intradomain routing protocols because they are used for building
the routing tables within a routing domain. Another name for intradomain routing protocols is
interior gateway protocols (IGPs).

The Internet is organized as autonomous systems and routing between them is accomplished by
interdomain routing protocols. While intradomain routing was focussed on finding the shortest
paths between nodes, interdomain routing is concerned with finding a loop-free policy-compliant
path to destinations. A policy is a set of rules which an AS abides by regarding the traffic it
will send or receive. For example, a policy for an AS X which is connected to AS Y and AS Z
can be the following. It prefers to send traffic through AS Y over AS Z but it will use AS Z
if it is the only option. It will never carry traffic from AS Y to AS Z or vice versa. This kind
of a policy would be typical of a corporation which has subscribed to Internet service from two
Internet service providers (ISPs), one which is the primary ISP and the other is the backup.
Since the corporation is a paying customer it will not help out the ISPs by transferring traffic
between them using its own network. Since each intradomain routing protocol has its own metric
for calculating optimal paths, it is not feasible for an interdomain routing protocol to aim for
optimality in paths which span routing domains. Consequently, interdomain routing aims for
reachability rather than optimality.

There have been two interdomain routing protocols which have been developed for the Internet.
The first one was called the Exterior Gateway Protocol (EGP) and required the interconnections
among the ASs to have a tree-like structure. This was a severe limitation of EGP and it was
replaced by the Border Gateway Protocol (BGP) which is used in the Internet today. BGP
works by having each AS configure one of its routers to be the BGP speaker. The BGP speakers
of different ASs establish BGP sessions to exchange reachability information between the ASs.
BGP advertises complete paths in terms of ASs to reach networks rather than a next hop. This
helps check the policy compliance of a candidate path and also in detecting loops. A 16 bit
identifier is assigned to an AS by a central authority to identify it.

82

7.3 Congestion Avoidance

A network is said to be congested if buffer overflows occur frequently in its nodes. While flow
control is focussed on preventing a single source from overflowing the buffer at a destination,
congestion control prevents a set of sources from causing buffer overflows anywhere in the net-
work. Congestion control algorithms attempt to reduce and recover from congestion once it
occurs while congestion avoidance algorithms try to predict the occurrence of congestion and
take steps to prevent it from occurring. Congestion avoidance schemes require steps to be taken
at both the network and transport layers but in this section we describe the network layer
functionality of some such schemes.

Random Early Detection (RED)

In this scheme, each router in the network monitors the length of its queue and randomly drops
a packet when the queue length is close to causing a buffer overflow. The reasoning behind this
scheme is that the source which sent the packet will timeout waiting for an acknowledgement and
infer that the network is congested or nearing congestion. It will then reduce its transmission
rate. If a sufficient number of source reduce their transmission rates, congestion will be avoided.
Of course, RED requires cooperation form the transport layer which will need to reduce the
source transmission rate upon timeout.

The calculation of the queue length in RED involves a weighted running average, i.e. it is
calculated as

Lavg(n+ 1) = (1− w)× Lavg(n) + w × Linst(n+ 1)

where Linst(n) is the nth sample of the instantaneous value of the queue length, Lavg(n) is the
average value of the queue length after the nth sample is taken, and w is the weighting factor
where 0 < w < 1. The reason for using the average value of the queue length instead of the
instantaneous value to predict imminent congestion is that bursts of packets which arrive at the
router and serviced by it without causing overflows will not trigger the congestion avoidance
mechanism. Such bursts will increase the instantaneous queue length but will not significantly
affect the average queue length.

The probability of dropping a packet varies with the queue length in the following manner. RED
maintains two thresholds for the average queue length: Kmin and Kmax. When a packet arrives
at a router which is running RED, the average queue length Lavg is calculated and compared to
these thresholds. If Lavg ≤ Kmin, the packet is queued. If Lavg ≥ Kmax, the packet is dropped.
If Kmin < Lavg < Kmax, the packet is dropped with some probability Pdrop. The exact value of
Pdrop as a function of these parameters is

Ptemp = Pmax ×
Lavg −Kmin

Kmax −Kmin

Pdrop =
Ptemp

1−m× Ptemp

where m is the number of newly arrived packets which have been queued and not dropped
while Lavg has been between the two thresholds. The motivation behind the second equation
above is that as m increases Pdrop increases making a packet drop increasingly likely as the time
since the last drop increases. This made the packet drop events to be widely spaced in time.
For example, consider a value of 0.02 for Pmax and let m = 0 initially. If the average queue

83

length Lavg = Kmax+Kmin

2 , then the initial value of Ptemp = 0.01. Since m = 0, Pdrop is also
equal to 0.01. A packet which arrives at the router has a 1% chance of being dropped and with
arriving packet which is not dropped m increases causing Pdrop to increase. Once 50 packets
arrive without being dropped, Pdrop increases to 0.02 and once 99 packets arrive without being
dropped Pdrop increases to 1. The nice feature of this algorithm is that it ensures that the packet
drops are evenly distributed in time.

Explicit Congestion Notification (ECN)

In the previous scheme, the source was implicitly informed of impending congestion by dropping
one of the packets sent by it. ECN is used to explicitly inform the source of impending congestion
without dropping packets. In ECN, a router sets a bit in the IP header of an arriving packet when
it is about to experience congestion. This bit is echoed back to the source by the destination
of the packet. The source then reduces its transmission rate alleviating the congestion at the
router. Two bits in the TOS field of the IPv4 header are used to implement ECN. One is set
by the source to indicate that it is ECN-capable, i.e. it is capable of reacting to a congestion
notification. The other bit is set by the routers along the path to the destination to indicate
that congestion is about to occur.

84

Chapter 8

Transport Layer

The goal of the transport layer is to convert the host-to-host packet delivery service provided by
the network layer into a process-to-process communication channel, i.e. it enables application
processes running on the source node to communicate with application processes running on the
destination node. The network layer, as epitomized by IP, provides a best-effort packet delivery
service which is unreliable and has the following limitations:

• Packets can be dropped

• Packets can arrive out of order at the destination

• Duplicate copies of a packet can be delivered at a destination

• Packet size is limited by the minimum MTU along the path to the destination

• Packets may be delivered after a long delay

The transport layer has to implement algorithms to convert this underlying best-effort service
into a reliable packet delivery service which has the following desirable characteristics:

• Guaranteed packet delivery

• Delivery of packets in the same order they were sent

• Delivery of at most one copy of a packet to the destination

• Support the delivery of arbitrarily large messages from source to destination

• Allow the destination to apply flow control on the source

• Allow multiple application processes on both source and destination hosts to communicate
using the same network path

Different transport layer protocols provide different combinations of these desirable characteris-
tics. We will discuss two transport layer protocols from the TCP/IP suite of protocols which are
widely used on the Internet: User Datagram Protocol (UDP) and Transmission Control Protocol
(TCP).

85

Source Port Destination Port

Length Checksum

Data

0 16 31

Figure 8.1: UDP header format

8.1 User Datagram Protocol (UDP)

UDP is the simplest transport layer protocol which builds on the end-to-end packet delivery
service provided by IP into a process-to-process communication service. It achieves this by pro-
viding a way to demultiplex the packets arriving on a single network path to different application
processes on the destination node.

The main problem which UDP solves is that there may be multiple application processes running
on a destination which are receiving packets on the same link. All the packets will have the
same destination IP address so there needs to be a mechanism to differentiate packets destined
for different application processes. One way is to use the process id (pid) assigned by the
operating system to the application process to identify it but this would require the source to
learn the pid which is not feasible if the source is contacting the destination for the first time.
A more commonly used approach is for the application processes on the source and destination
to identify each other using an abstract identifer called the port which is defined beforehand for
well-known applications. New applications for which a port has not been preassigned can use a
well-known port to agree on a unused port for future communication. A port in this context is
just a number and has no relation to the physical ports on the source and destination nodes. So
an application running on a node is identified by an IP address and port where the IP address
is the node’s IP address. This (IP address, port) pair is called a socket.

The UDP header format is shown in Figure 8.1. The first two fields in the header correspond to
the source and destination port identifier. Each identifier is 16 bits long so there can upto 65,536
ports. However, a port has to be uniquely assigned to an application process only on a single host
since the application is identified by an (IP address, port) pair. The next header field gives the
length of the UDP packet including the length of the header. Although UDP does not guarantee
reliable delivery it does perform an elementary check on the integrity of the message using a
16-bit Internet checksum. The UDP checksum is optional in IPv4 but it will become mandatory
in IPv6 because the IPv6 header does not have a checksum of its own. UDP computes the
checksum over the UDP header, the UDP data and a set of fields from the IP and UDP headers
which are called the pseudoheader. The pseudoheader consists of three fields from the IP header,
namely the 8-bit protocol number, the source IP address and the destination IP address, and
the UDP length field. The reason for including the pseudoheader in the checksum calculation is
to ensure that the packet has been delivered to the correct destination and claims to be from the
correct source. If the source or destination IP addresses are modified by intermediate routers
which forward the packet, this is likely to be detected by the UDP checksum.

86

Source Port Destination Port

Sequence Number

Acknowledgement

HdlrLen 0 Flags Advertised Window

Checksum Urgent Pointer

Options (variable length)

Data

0 4 10 16 31

Figure 8.2: TCP segment structure

8.2 Transmission Control Protocol (TCP)

In contrast to UDP, TCP is a more complex transport layer protocol which offers a reliable,
connection-oriented service between application processes running on the host and destination
nodes. TCP has the following features

• It guarantees reliable, in-order delivery of a stream of bytes

• It is a full-duplex protocol in the sense that a single TCP connection supports a pair of
byte streams, one flowing in each direction between source and destination nodes

• It includes a flow control mechanism which allows the receiver to control how much data
a sender can transmit at a given time

• It supports a demultiplexing mechanism like UDP which allows multiple application pro-
cesses on a host to receive packets on the same network path

• It also implements a congestion control algorithm which enables the source to react to
network congestion and help alleviate it

TCP Segment Format

The packet exchanged between nodes using TCP are called segments. The structure of a TCP
segment is shown in Figure 8.2. The segment consists of the following fields.

• Source Port The 16-bit source port number identifies the application on the source host
which originated the TCP segment. The destination host can use this port number to
send a reply to the source application which sent the segment.

• Destination Port The 16-bit destination port number identifies the application on the
destination host the segment is destined for.

• Sequence Number The 32-bit sequence number field contains the sequence number of the
first byte of data contained in the TCP segment. For instance, a segment with sequence
number 101 and containing 200 bytes of data will be followed by a segment which has
sequence number 301 in its sequence number field.

87

• Acknowledgement The 32-bit acknowledgement field contains the sequence number of
the next expected byte. For instance, if the acknowledgement field contains the value 2001
then this means that the bytes having sequence number upto and including 2000 have
been received correctly by the host sending the acknowledgement.

• Header Length The 4-bit header length field is used to indicate the length of the TCP
header in multiples of 32-bit words.

• Reserved The 6 bits following the header length field are reserved for future use.

• Flags The 6-bit flag field is used to communicate control information to the destination.
The flag bits in order of appearance are

– URG Urgent pointer field valid

– ACK Acknowledgement field valid

– PSH Push operation invoked

– RST Connection to be reset

– SYN Start of a new connection

– FIN Final segment from sender

The SYN and FIN flags are used when opening and closing a connection, respectively. The
ACK flag is set when the acknowledgement field is valid and indicates to the receiver that
it should read the acknowledgement field. The URG flag is set when the segment contains
urgent data. A segment with the PSH flag set forces the TCP process at the destination
flush its buffers and pass the information to the application. If segments arrive without
the PSH flag set, the destination can coalesce multiple segments before passing them to
the application. The RST flag is used by the sending source to immediately reset or abort
a connection because it has an unexpected error condition. Multiple flags can be set at
the same time. For example, a segment with both the ACK and FIN flags set indicates
that it is the last segment from the source host which is also acknowledging some received
segments.

• Advertised Window The 16-bit advertised window field is used for flow control purposes.
It quantifies the available buffer space at a receiver.

• Checksum The 16-bit checksum field is computed as the Internet checksum over the TCP
header, the TCP payload, and a pseudoheader which contains the source and destination
IP addresses as well as the length field of the IP header.

• Urgent Pointer The 16-bit urgent pointer points to the end of the urgent data. The
urgent data is usually present immediately after the header so that it can be processed
quickly. The URG flag is set for a segment which contains urgent data.

• Options TCP supports several options which are used to provide extra functionality. Each
option is preceded by two bytes - the first byte contains the option type and the second
byte indicates the length of the option in bytes (including the first two bytes). An example
of an option is the maximum segment size (MSS) option which is used by the source host
to negotiate the maximum size of the segment which will be used by the connection. The
MSS is stored in a 16 bit field limiting it to 64 KB.

• Data The payload of the TCP segment is located at an offset specified by the header
length field from the beginning of the TCP segment.

88

TCP Connection Establishment and Termination

The TCP connection establishment procedure between two hosts involves a three-way handshake.
The host which initiates the connection is called the client and the host which responds to the
client’s request is called the server. The procedure is as follows.

1. The client sends a segment to the server with the SYN flag set and an initial segment
number it plans to use for this TCP connection. Let the initial sequence number the client
plans to use be x.

2. The server responds with a segment that has both the SYN and ACK flags set and includes
a sequence number of its own which it plans to use for this connection. The acknowledge-
ment field contains x+ 1 which is the sequence number of the next byte which the server
expects from the client. Let the initial sequence number the server plans to use be y.

3. Finally, the client sends a segment with the ACK flag set and containing the value y + 1
in the acknowledgement field.

Once these three segments have been exchanged, the TCP connection is established and the each
host knows the initial sequence number the other host plans to use for this connection. These
initial sequence numbers are randomly chosen rather than starting from a predetermined value
like zero. The reason for doing this is to prevent delayed segments from a previous connection
between the client and server from interfering with the current connection.

The TCP connection termination procedure involves a four-way handshake. This allows the
client and the server to independently stop sending segments while allowing the other host to
keep sending segments. The procedure is as follows.

1. The client sends a segment with the FIN flag set to indicate to the server that it wants to
terminate the TCP connection.

2. The server sends a segment with the ACK flag set to confirm the receipt of the FIN segment.
Once this acknowledgement is received by the client, it stops sending data segments in the
client-to-server direction. However, the server may still need to send segments to the client
and the client will need to respond to the received segments with acknowledgements.

3. When the server is ready to close the connection, it sends a segment with the FIN flag set.

4. When the client receives the FIN segment it responds with an ACK segment and the
connection is terminated in both directions.

In the above description of the connection termination procedure, the role of the client and
server can be interchanged, i.e. the server may send the FIN segment first.

TCP Acknowledgements

TCP guarantees reliable delivery of segments using retransmissions and acknowledgements. The
TCP acknowledgement mechanism has the following features.

89

• Cumulative Acknowledgements When the acknowledgement field in the TCP segment
contains a number x+1 it is acknowledging the correct receipt of all bytes having sequence
number upto and including x. The advantage of this scheme is that lost acknowledgements
do not cause a problem as long as subsequent acknowledgements with a higher sequence
number are received correctly.

• Piggybacking When a receiver wants to acknowledge a correctly received TCP segment
it can either send an ACK-only segment which consists of only the TCP header and has no
data in it, or it can send the acknowledgement in a data segment travelling in the reverse
direction. This method is called piggybacking. The advantage of piggybacking is that it
reduces acknowledgement traffic in the reverse direction.

• Delayed ACK The TCP process on the receiving side has the option of generating an
ACK as soon as a segment arrives or delaying the ACK for a while. If the ACK generation
is delayed, then the receiver can possibly acknowledge the receipt of more than received
segments with a single ACK and reduce traffic in the reverse direction. However, delaying
an ACK too much can cause a timeout at the sending side and result in unnecessary
retransmissions.

• Duplicate ACK If a segment is lost and subsequent segments arrive at the receiver, the
receiving TCP process generates duplicate ACKs acknowledging the receipt of the bytes
received so without gaps. For instance, suppose all the bytes upto sequence number x have
been received correctly at the receiver and a segment containing bytes x + 1 to y is lost.
If segments with bytes having sequence number y+ 1 or later are received correctly at the
receiver, duplicate acknowledgements will be generated which will have the number x+ 1
in the acknowledgement field. This mechanism is used by the sender to infer the loss of a
segment.

TCP Sliding Window

TCP uses a sliding window protocol to implement a flow control mechanism between the sender
and receiver. The receiver advertises the size of the sliding window to the sender using the
16-bit advertised window field in the TCP header. The maximum number of unacknowledged
bytes the sender can have is limited by the value of the advertised window. The receiver chooses
the value of the advertised window depending on the amount of available buffer space. This
prevents the sender by causing buffer overflow at the receiver.

The sender maintains a send buffer which contains the following.

• Data which has been sent but has not been acknowledged

• Data which the sending application has written to the buffer but has not been transmitted
yet

Three pointers are required at the sender side to indicate the boundaries of the different types of
data - LastByteAcked, LastByteSent, and LastByteWritten. These are illustrated in Figure 8.3a.
The figure shows the sequence of bytes processed by the sender side TCP as a horizontal tape.
The shaded region of the tape is the bytes contained in the send buffer. Since a byte in the send
buffer can be acknowledged only after it has been sent, we have the following inequality.

LastByteAcked ≤ LastByteSent

90

LastByteAcked LastByteSent

LastByteWritten

(a)

LastByteRead NextByteExpected

LastByteReceived

(b)

Figure 8.3: Illustration of the (a) TCP send buffer and (b) TCP receive buffer

Similarly a byte cannot be sent before the sending application has written it into the send buffer,
we have the following inequality.

LastByteSent ≤ LastByteWritten

Once a byte has been acknowledged it is no longer necessary to store it in the send buffer, i.e. all
bytes to the left of and including LastByteAcked need not be stored in the send buffer. Similarly
there are no bytes to the right of LastByteWritten in the send buffer because they have not been
written into the buffer by the sending application. The maximum size of the send buffer is given
by the parameter MaxSendBuffer.

The receiver maintains a receive buffer which contains the following.

• Data which has been received out of order

• Data which has been received in order but has not been read by the receiving application

Three pointers are required at the receiver side to indicate the boundaries of the different types
of data - LastByteRead, NextByteExpected, and LastByteReceived. These are illustrated in Figure
8.3b. The gap in the shaded region illustrates a situation where bytes have arrived out of order.
Since a byte cannot be read by the receiving application until it is received and all the bytes
preceding it have also been received, we have the following inequality.

LastByteRead < NextByteExpected

If the data bytes arrive in order, NextByteExpected points to the byte after the byte pointed
to by LastByteReceived. If the data bytes arrive out of order, NextByteExpected points to the
start of the first gap in the data. Thus we have the following inequality.

NextByteExpected ≤ LastByteReceived + 1

Once a byte has been read by the receiving application it is no longer necessary to store it in
the receive buffer, i.e all bytes to the left of and including LastByteRead need not be stored
in the receive buffer. There are no bytes to the right of LastByteReceived in the receive buffer
because they have not been received.

The maximum size of the receive buffer is given by the parameter MaxReceiveBuffer. To avoid
buffer overflow, the receiver side TCP must maintain the following inequality.

LastByteReceived − LastByteRead ≤ MaxReceiveBuffer

The receiver advertises a window size of

AdvertisedWindow = MaxReceiveBuffer − (LastByteReceived − LastByteRead)

91

which is an estimate of the amount of free space remaining in its buffer. As new data arrives at
the receiver, the pointer LastByteReceived moves to the right reducing the size of the advertised
window. As data is read by the receiving application, the pointer LastByteRead moves to the
right reducing the size of the advertised window.

TCP on the sender side uses the advertised window sent by the receiver to maintain the following
inequality.

LastByteSent − LastByteAcked ≤ AdvertisedWindow

The maximum amount of new data the sender can transmit is given by the following equation.

EffectiveWindow = AdvertisedWindow − (LastByteSent − LastByteAcked)

The sender side TCP must also ensure that the sending application does not overflow the send
buffer by making sure the following inequality holds.

LastByteWritten − LastByteAcked ≤ MaxSendBuffer

The sender side TCP may have to block the sending application from writing data whenever
the above inequality is in danger of being violated.

It is now easy to see how a slow receiver prevents a fast sender from causing buffer overflow. If
a receiver cannot read the received data quickly enough, the LastByteReceived pointer moves
to the right faster than the LastByteRead pointer resulting in the AdvertisedWindow becoming
zero. Then the sender cannot send any new data. Then the send buffer fills up and the sender
side TCP blocks the sending application from writing any new data into the send buffer.

TCP Transmission Mechanism

The sending application writes bytes into the send buffer and it is up to the send side TCP
process to decide when to send a TCP segment. If the flow control window is not restricting the
sending of a segment, TCP has three mechanisms which trigger the transmission of a segment.

• TCP maintains a variable called the maximum segment size (MSS) which is the size of the
largest segment which TCP can send without resulting in fragmentation by the IP on the
sender. The MSS is typically equal to the MTU of the directly connected network minus
the size of the TCP and IP headers. Whenever the sending application has written an
MSS worth of bytes into the send side buffer, TCP sends a segment.

• TCP also sends a segment when the sending application explicitly asks it to do so by
invoking a push operation.

• The third mechanism which triggers a segment transmission is Nagle’s algorithm which
will be described below.

Nagle’s algorithm is a solution to a problem known as the silly window syndrome. Suppose that
the flow control window on the sender side is currently closed. Now if an acknowledgement
arrives from the receiver which increases the send window from zero to a value less than the
MSS, say half the MSS. Then the send side TCP has two options: either send a segment of
size equal to half the MSS or wait for an acknowledgement to arrive which will increase the

92

window size to a full MSS. The former strategy of aggressively taking advantage of the available
window size can result in the repeated transmission of very small or silly segments in which
the data length is smaller than the header length. The problem is that once a small segment is
introduced into the system it remains in the system until the connection terminates. Restricting
TCP from ever sending small segments is not a feasible solution because an application can
possibly invoke a push operation after it has written a single byte into the send buffer. Such
a scenario is common in the case of interactive applications like Telnet. One solution is for
the receiver to delay the acknowledgements corresponding to segments and acknowledge several
of them at once at the same time. This delaying tactic can result in a larger window being
advertised in the acknowledgement since it gives the receiving application more time to read
data from the receive buffer. But a timeout can occur at the sender if the receiver delays the
acknowledgements for too long. A better solution is to let the sender delay the sending of small
segments according to Nagle’s algorithm which is as follows.

When the sending application writes new data into the send buffer

If the send window and data written are both greater than or equal to MSS

Send a segment of size equal to MSS

Else

If there is unacknowledged data in flight

Buffer the new data until an acknowledgement arrives

Else

Send all the new data immediately

Nagle’s algorithm allows TCP to transmit a segment of size equal to the MSS if the data avail-
able to be sent and the effective send window are both at least as large as the MSS. But if either
the data available or the effective send window are smaller than the MSS, TCP transmits a
segment as long as there are no other unacknowledged segments in flight. If some of the previ-
ously sent segments have not been acknowledged, TCP waits for an acknowledgement to arrive
before transmitting a segment. The consequence of Nagle’s algorithm is that an application will
send one segment per round-trip time (RTT). The arrival of the acknowledgement is used as the
variable timer which triggers a tranmission. Using a clock-based timer to trigger transmissions
would be harder to design for links having different and possibly time-varying RTTs. Nagle’s
algorithm alleviates but does not completely solve the silly window syndrome because the ac-
knowledgement which triggers the transmission may not increase the effective send window to
a large value.

TCP Timeout Computation

TCP uses timeouts and retransmissions to guarantee reliable delivery of segments. TCP sets
the timeout value as a function of the RTT between a pair of hosts. However, estimating the
RTT between two hosts on the Internet is not an easy problem given the range of possible RTTs
between hosts and the possible variation in the RTT between the same two hosts over time. The
RTT estimation algorithm used in TCP has evolved over the years as problems in previously
proposed solutions became apparent.

The algorithm given in the original TCP specification used a running average of the RTT to
estimate it and used the estimated value to compute the timeout. When TCP sends a segment
it records the time. When it receives an acknowledgement for the segment it computes the
difference between the current time and the segment transmission time as a sample RTT. It

93

then estimates the RTT as a weighted average between the the previous estimate of the RTT
and the sample RTT using the following equation.

EstimatedRTT = α× EstimatedRTT + (1− α)× SampleRTT

The parameter α is chosen to be between 0 and 1. It controls the effect of temporary changes of
the estimated RTT. A small value of α may result in the estimated RTT being heavily influenced
by temporary fluctuations while a large value will suppress the effect of temporary fluctuations.
The original TCP specification recommended a value between 0.8 and 0.9 for α. Once the RTT
has been estimated, the timeout value is calculated as the following.

TimeOut = 2× EstimatedRTT

One problem with this method of estimating the RTT is that retransmissions can ruin the
estimate. This is because when an acknowledgement arrives after a segment is retransmitted
there is no way of knowing if the acknowlegment is for the first copy of the segment or the
second copy of the segment. Suppose we associate the acknowledgement with the first copy
of the segment. Then in the case that the first copy is corrupted the acknowledgement will
actually be for the retransmitted segment and the difference between acknowledgement arrival
time and the first copy’s transmission time will be a wrong estimate of the sample RTT. If we
associate the acknowledgement with the retransmitted segment, then an acknowledgement for
the first copy may arrive after a long delay and cause an error in the estimation of the sample
RTT. To deal with this problem, the Karn/Partridge algorithm was proposed in 1987. It has
two main features, of which the first one specifically addresses the problem of RTT estimation
in the presence of segment retransmissions.

• Whenever a segment retransmission happens due to a timeout, TCP does not estimate the
RTT using the acknowledgements for such a segment. So TCP measures the sample RTT
only for the segments which have been transmitted exactly once.

• Whenever a segment retransmission happens, TCP sets the next timeout value to twice
the previous timeout value rather than basing it on the estimated RTT. This ensures that
a TCP source does not retransmit too quickly in the presence of network congestion.

The RTT estimation algorithm was further improved in 1988 by taking the variance of the
sample RTTs into account. The rationale behind this approach was that if the variation in the
sample RTTs is small then the estimated RTT is close to the true RTT and timeout value can
be chosen close to the estimated RTT rather than multiplying it by 2. But if the variation in
the sample RTTs is large then the timeout value should be chosen conservatively. The following
equations govern the calculation of the timeout by taking the variation into account.

Difference = SampleRTT− EstimatedRTT

EstimatedRTT = EstimatedRTT + δ ×Difference

Deviation = Deviation + δ(|Difference| −Deviation)

TimeOut = µ× EstimatedRTT + φ×Deviation

where δ is a fraction between 0 and 1, µ is typically set to 1 and φ is typically set to 4. So when
the variation in the sample RTTs is small, TimeOut is close to the EstimatedRTT while a large
variation causes Deviation to dominate the TimeOut value.

94

TCP Congestion Control

In addition to the sliding window flow control algorithm, TCP implements a congestion control
algorithm to prevent buffer overflows in the intermediate nodes along the path to the destination.
TCP maintains a variable called the CongestionWindow which is used by the sender to limit
the data being inserted into the network. This variable is the congestion control algorithm’s
counterpart of the flow control algorithm’s advertised window. The TCP source now limits the
maximum number of bytes of unacknowledged data to the minimum of the congestion window
and the advertised window. TCP’s effective window is now calculated in the following manner.

MaxWindow = MIN(CongestionWindow, AdvertisedWindow)

EffectiveWindow = MaxWindow - (LastByteSent -LastByteAcked)

The main challenge in TCP congestion control as compared to TCP flow control is that no-
body informs the source regarding the value of the CongestionWindow while the value of the
AdvertisedWindow is sent to the source by the destination. The source has no option but to
estimate the value of CongestionWindow by observing network events like timeouts in response
to its previous transmissions. TCP interprets timeouts to be the result of network congestion
and decreases the value of CongestionWindow when it encounters them. When timeouts do not
occur, TCP increases the value of CongestionWindow. The exact mechanism used by TCP to
modify CongestionWindow is called additive increase/multiplicative decrease (AIMD).

In AIMD, when a timeout occurs, the source sets CongestionWindow to half of its previous
value. This halving corresponds to the ”multiplicative decrease” part of AIMD. Although, the
CongestionWindow variable represents a certain number of bytes it is easier to think of it in
terms of packets for the purpose of illustration. Suppose the current value of CongestionWindow
is 16 packets. If a timeout occurs, CongestionWindow is set to 8 packets. More timeouts will
cause the value of CongestionWindow to be set to 4, then 2 and finally to 1 packet. The value
of CongestionWindow is not allowed to go below 1 packet even if additional timeouts occurred.
The size of the packet is typically the maximum segment size (MSS).

TCP’s congestion control algorithm increases the value of CongestionWindow by 1 packet when-
ever the source receives acknowledgements for CongestionWindow number of packets. So if the
current value of CongestionWindow is 4 and the source receives 4 acknowledgements, Conges-
tionWindow is increased to 5. This is the ”additive increase” part of AIMD.

AIMD is the right approach if the source is operating close to the capacity of the network path
from itself to the destination. However, the additive increase method takes a long time to reach
the capacity of the network. TCP provides a second mechanism called slow start to approach
the full capacity of the link much faster by increasing the congestion window exponentially. The
slow start algorithm is as follows.

1. Source starts by setting CongestionWindow to 1 packet

2. CongestionWindow is increased by 1 packet every time an acknowledgement arrives

3. If a timeout occurs, the following steps occur.

(a) The current value of the CongestionWindow is halved and stored in a variable called
the CongestionThreshold.

(b) CongestionWindow is set to 1 packet and source enters slow start again until the
value of CongestionWindow reaches CongestionThreshold.

95

(c) CongestionWindow then increases linearly according to AIMD. This phase is called
congestion avoidance. A timeout in the congestion avoidance phase results in the
CongestionWindow being halved and then increasing linearly for every reception of
a CongestionWindow’s worth of packets.

So if the current value of CongestionWindow is 4 and an acknowledgement arrives, Conges-
tionWindow is increased to 5. Another acknowledgement arrival increases the value of Conges-
tionWindow to 6. So by the time 4 acknowledgements arrive, the value of CongestionWindow
is increased to 8. So the CongestionWindow has doubled after 4 acknowledgements while it
increased to 5 in AIMD.

To understand what is ”slow” about the slow start algorithm we need to compare it to the original
behavior of TCP rather than the linear increase in AIMD. In the original implementation of TCP,
when a connection was established and the source first started to send packets the advertised
window was at a very large value because the receiver’s buffer was empty. If the source inserted
the advertised window’s worth of bytes into the network, the intermediate routers along the
path to the destination would not be able to handle this burst of traffic. So slow start was
designed to space the sending of packets to prevent a sudden burst of traffic from overflowing
intermediate node buffers at the same time reaching the capacity of the link quickly. Thus slow
start is used in two situations (both of which have a large advertised window)

• At the very beginning of a TCP connection

• When a connection goes dead waiting for a timeout. This is usually because a packet was
lost and the sender continued to send packets until its effective window dwindled to zero.
The lost packet is eventually retransmitted resulting in a cumulative ACK which opens
the effective window to a very large value. Now the source uses slow start to space the
insertion of the large amount of data into the network.

Two more features were added to the TCP congestion control mechanism to improve the through-
put in the presence of packet losses - fast retransmit and fast recovery. In the original TCP,
a lost packet would be retransmitted only after a timeout. But the receiver would send an
acknowledgement for every out-of-order packet repeatedly acknowledging the bytes which were
successfully received just before the missing packet. Such acknowledgements are called duplicate
ACKs. In fast retransmit, the source retransmits the missing packet as soon as it receives three
duplicate ACKs. The identity of the missing packet is garnered from the next expected byte
sequence number which is present in the duplicate ACKs. The reason for waiting for three du-
plicate ACKs before retransmitting the packet rather than doing so immediately after the first
duplicate ACK is received is that duplicate ACKs can also arrive because of packet reordering
by the network. Waiting for three duplicate ACKs is a tradeoff between avoiding unnecessary
retransmissions and retransmitting a missing packet quickly. Since fast retransmit uses three
duplicate ACKs to detect a missing packet, it also infers the occurrence of network congestion
from this event. If this packet loss is detected during slow start, the congestion window would
be set to 1 and slow start is run until the congestion threshold is reached. In fast recovery, this
slow start phase between the loss of a packet and the eventual additive increase is eliminated and
an additive increase strategy is immediately followed after halving the value of the congestion
window.

In conclusion, slow start is used only at the beginning of a connection and when a timeout
occurs. At all other times, the AIMD mechanism is used to modify the congestion window.

96

