Review of Elementary Probability Theory

EE 706: Communication Networks

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

January 21, 2010

Our approach

- Two approaches exist to the study of probability theory
- Rigorous approach based on tools of measure theory
- Nonrigorous approach with focus on problem-solving methods
- Our goal is to analyze the performance of network protocols using the tools of probability theory
- For this course second anproach is sufficient

Our approach

- Two approaches exist to the study of probability theory
- Rigorous approach based on tools of measure theory
- Nonrigorous approach with focus on problem-solving methods
- Our goal is to analyze the performance of network protocols using the tools of probability theory
- For this course, second approach is sufficient

Our approach

- Two approaches exist to the study of probability theory
- Rigorous approach based on tools of measure theory
- Nonrigorous approach with focus on problem-solving methods
- Our goal is to analyze the performance of network protocols using the tools of probability theory
- For this course, second approach is sufficient

Outline

Introduction to Probability Theory
Sample Space
Events
Probabilities Defined on Events
Conditional Probability
Independent Events
Bayes' Theorem
Random Variables
Random Variables
Discrete Random Variables
Continuous Random Variables
Expectation of a Random Variable

What is a sample space?

- We perform an experiment with unpredictable outcome
- All possible outcomes are known

```
Detinition
A sample space is the set of all possible outcomes of an experiment and
is denoted by S}\mathrm{ .
Examples
- Coin toss: S = {Heads, Tails}
* Roll of a die: }S={1,2,3,4,5,6
* Tossing of two coins: S = {(H,H),(T,H),(H,T),(T,T)}
* A box contains three balls: one red, one green and one blue. Ball is
    drawn, replaced and a ball is drawn again. What is S? Without the
    replacement, what is S?
| Coin is tossed until heads appear. What is S?
* Experiment is measuring a car's lifetime. S= [0,\infty)
```


What is a sample space?

- We perform an experiment with unpredictable outcome
- All possible outcomes are known

Definition
A sample space is the set of all possible outcomes of an experiment and is denoted by S.

Examples

- Coin toss: $S=\{$ Heads, Tails $\}$
- Roll of a die: $S=\{1,2,3,4,5,6\}$
- Tossing of two coins: $S=\{(H, H),(T, H),(H, T),(T, T)\}$
- A box contains three balls: one red, one green and one blue. Ball is drawn, replaced and a ball is drawn again. What is S? Without the replacement, what is S?
- Coin is tossed until heads appear. What is S ?
- Experiment is measuring a car's lifetime. $S=[0, \infty)$

What is a sample space?

- We perform an experiment with unpredictable outcome
- All possible outcomes are known

Definition

A sample space is the set of all possible outcomes of an experiment and is denoted by S.

Examples

- Coin toss: $S=\{$ Heads, Tails $\}$
- Roll of a die: $S=\{1,2,3,4,5,6\}$
- Tossing of two coins: $S=\{(H, H),(T, H),(H, T),(T, T)\}$
- A box contains three balls: one red, one green and one blue. Ball is drawn, replaced and a ball is drawn again. What is S? Without the replacement, what is S ?
- Coin is tossed until heads appear. What is S?
- Experiment is measuring a car's lifetime. $S=[0, \infty)$

What is a sample space?

- We perform an experiment with unpredictable outcome
- All possible outcomes are known

Definition

A sample space is the set of all possible outcomes of an experiment and is denoted by S.

Examples

- Coin toss: $S=\{$ Heads, Tails $\}$
- Roll of a die: $S=\{1,2,3,4,5,6\}$
- Tossing of two coins: $S=\{(H, H),(T, H),(H, T),(T, T)\}$
- A box contains three balls: one red, one green and one blue. Ball is drawn, replaced and a ball is drawn again. What is S ? Without the replacement, what is S?
- Coin is tossed until heads appear. What is S ?
- Experiment is measuring a car's lifetime. $S=[0, \infty)$

What is a sample space?

- We perform an experiment with unpredictable outcome
- All possible outcomes are known

Definition

A sample space is the set of all possible outcomes of an experiment and is denoted by S.

Examples

- Coin toss: $S=\{$ Heads, Tails $\}$
- Roll of a die: $S=\{1,2,3,4,5,6\}$
- Tossing of two coins: $S=\{(H, H),(T, H),(H, T),(T, T)\}$
- A box contains three balls: one red, one green and one blue. Ball is drawn, replaced and a ball is drawn again. What is S? Without the replacement, what is S ?
- Coin is tossed until heads appear. What is S?
- Experiment is measuring a car's lifetime. $S=[0, \infty)$

What is a sample space?

- We perform an experiment with unpredictable outcome
- All possible outcomes are known

Definition

A sample space is the set of all possible outcomes of an experiment and is denoted by S.

Examples

- Coin toss: $S=\{$ Heads, Tails $\}$
- Roll of a die: $S=\{1,2,3,4,5,6\}$
- Tossing of two coins: $S=\{(H, H),(T, H),(H, T),(T, T)\}$
- A box contains three balls: one red, one green and one blue. Ball is drawn, replaced and a ball is drawn again. What is S ?
- Coin is tossed until heads appear. What is S ?
- Experiment is measuring a car's lifetime. $S=[0, \infty)$

What is a sample space?

- We perform an experiment with unpredictable outcome
- All possible outcomes are known

Definition

A sample space is the set of all possible outcomes of an experiment and is denoted by S.

Examples

- Coin toss: $S=\{$ Heads, Tails $\}$
- Roll of a die: $S=\{1,2,3,4,5,6\}$
- Tossing of two coins: $S=\{(H, H),(T, H),(H, T),(T, T)\}$
- A box contains three balls: one red, one green and one blue. Ball is drawn, replaced and a ball is drawn again. What is S ? Without the replacement, what is S ?
- Coin is tossed until heads appear. What is S ?
- Experiment is measuring a car's lifetime. $S=[0, \infty)$

What is a sample space?

- We perform an experiment with unpredictable outcome
- All possible outcomes are known

Definition

A sample space is the set of all possible outcomes of an experiment and is denoted by S.

Examples

- Coin toss: $S=\{$ Heads, Tails $\}$
- Roll of a die: $S=\{1,2,3,4,5,6\}$
- Tossing of two coins: $S=\{(H, H),(T, H),(H, T),(T, T)\}$
- A box contains three balls: one red, one green and one blue. Ball is drawn, replaced and a ball is drawn again. What is S? Without the replacement, what is S ?
- Coin is tossed until heads appear. What is S ?

What is a sample space?

- We perform an experiment with unpredictable outcome
- All possible outcomes are known

Definition

A sample space is the set of all possible outcomes of an experiment and is denoted by S.

Examples

- Coin toss: $S=\{$ Heads, Tails $\}$
- Roll of a die: $S=\{1,2,3,4,5,6\}$
- Tossing of two coins: $S=\{(H, H),(T, H),(H, T),(T, T)\}$
- A box contains three balls: one red, one green and one blue. Ball is drawn, replaced and a ball is drawn again. What is S ? Without the replacement, what is S ?
- Coin is tossed until heads appear. What is S ?
- Experiment is measuring a car's lifetime. $S=[0, \infty)$

What is an event?

Definition

An event is any subset of a sample space.
Examples

- Coin toss: $S=\{$ Heads, Tails $\} . E=\{$ Heads $\}$ is the event that a head appears on the flip of a coin.
- Roll of a die: $S=\{1,2,3,4,5,6\} . E=\{2,4,6\}$ is the event that an even number appears when the die is rolled.
- Experiment is measuring a car's lifetime. $S=I 0, \infty) . E=(1,3)$ is the event that the car stops working between one and three years.

What is an event?

Definition

An event is any subset of a sample space.
Examples

- Coin toss: $S=\{$ Heads, Tails $\} . E=\{$ Heads $\}$ is the event that a head appears on the flip of a coin.
\Rightarrow Roll of a die: $S=\{1,2,3,4,5,6\} . E=\{2,4,6\}$ is the event that an even number appears when the die is rolled.
- Exneriment is measuring a car's lifetime. $S=[0, \infty) . E=(1,3)$ is the event that the car stops working between one and three years.

What is an event?

Definition

An event is any subset of a sample space.

Examples

- Coin toss: $S=\{$ Heads, Tails $\} . E=\{$ Heads $\}$ is the event that a head appears on the flip of a coin.
- Roll of a die: $S=\{1,2,3,4,5,6\}$. $E=\{2,4,6\}$ is the event that an even number appears when the die is rolled.
- Experiment is measuring a car's lifetime. $S=[0, \infty) . E=(1,3)$ is the event that the car stops working between one and three years.

What is an event?

Definition

An event is any subset of a sample space.

Examples

- Coin toss: $S=\{$ Heads, Tails $\} . E=\{$ Heads $\}$ is the event that a head appears on the flip of a coin.
- Roll of a die: $S=\{1,2,3,4,5,6\} . E=\{2,4,6\}$ is the event that an even number appears when the die is rolled.
- Experiment is measuring a car's lifetime. $S=[0, \infty) . E=(1,3)$ is the event that the car stops working between one and three years.

More about events

Definition
For an event E, E^{c} is the complement of E. It consists of all outcomes in the sample space S that are not in E.

Examples

- Roll of a die: $S=\{1,2,3,4,5,6\} . E=\{2,4,6\} . E^{c}=\{1,3,5\}$.
- In general, $S^{c}=\phi$ where ϕ denotes the empty set corresponding to the null event consisting of no outcomes.

More about events

Definition

For an event E, E^{c} is the complement of E. It consists of all outcomes in the sample space S that are not in E.

Examples

- Roll of a die: $S=\{1,2,3,4,5,6\} . E=\{2,4,6\} . E^{c}=\{1,3,5\}$.
\Rightarrow In general, $S^{c}=\phi$ where ϕ denotes the empty set corresponding to the null event consisting of no outcomes.

More about events

Definition

For an event E, E^{c} is the complement of E. It consists of all outcomes in the sample space S that are not in E.

Examples

- Roll of a die: $S=\{1,2,3,4,5,6\} . E=\{2,4,6\} . E^{c}=\{1,3,5\}$.
- In general, $S^{c}=\phi$ where ϕ denotes the empty set corresponding to the null event consisting of no outcomes.

More about events

Definition
For events E and $F, E \cup F$ is called the union of E and F. It consists of all outcomes in the sample space S that are either in E or F or in both E and F.

Examples

- Roll of a die: $S=\{1,2,3,4,5,6\} . E=\{2,4,6\}, F=\{4,5,6\}$. $E \cup F=\{2,4,5,6\}$
- If $E_{1}, E_{2}, E_{3}, \ldots$ are events, $\cup_{n=1}^{\infty} E_{i}$ is the event that consists of all the outcomes that are in E_{n} for at least one value of $n=1,2,3, \ldots$

More about events

Definition
For events E and $F, E \cup F$ is called the union of E and F. It consists of all outcomes in the sample space S that are either in E or F or in both E and F.

Examples

- Roll of a die: $S=\{1,2,3,4,5,6\} . E=\{2,4,6\}, F=\{4,5,6\}$. $E \cup F=\{2,4,5,6\}$
- If $E_{1}, E_{2}, E_{3}, \ldots$ are events, $\cup_{n=1}^{\infty} E_{i}$ is the event that consists of all the outcomes that are in E_{n} for at least one value of $n=1,2,3$,

More about events

Definition

For events E and $F, E \cup F$ is called the union of E and F. It consists of all outcomes in the sample space S that are either in E or F or in both E and F.

Examples

- Roll of a die: $S=\{1,2,3,4,5,6\} . E=\{2,4,6\}, F=\{4,5,6\}$. $E \cup F=\{2,4,5,6\}$
- If $E_{1}, E_{2}, E_{3}, \ldots$ are events, $\cup_{n=1}^{\infty} E_{i}$ is the event that consists of all the outcomes that are in E_{n} for at least one value of $n=1,2,3, \ldots$.

More about events

Definition

For events E and $F, E \cap F$ is called the intersection of E and F. It consists of all outcomes in the sample space S that are in both E and F.

Definition
Events E and F are said to be mutually exclusive if $E \cap F=\phi$. Mutually
exclusive events have no outcomes in common.

More about events

Definition

For events E and $F, E \cap F$ is called the intersection of E and F. It consists of all outcomes in the sample space S that are in both E and F.

Examples

- Roll of a die: $S=\{1,2,3,4,5,6\} . E=\{2,4,6\}, F=\{4,5,6\}$. $E \cap F=\{4,6\}$
- If $E_{1}, E_{2}, E_{3}, \ldots$ are events, $\cap_{n=1}^{\infty} E_{i}$ is the event that consists of the outcomes that are in every E_{n} for $n=1,2,3$,

Definition
Events E and F are said to be mutually exclusive if $E \cap F=\phi$. Mutually
exclusive events have no outcomes in common.

More about events

Definition

For events E and $F, E \cap F$ is called the intersection of E and F. It consists of all outcomes in the sample space S that are in both E and F.

Examples

- Roll of a die: $S=\{1,2,3,4,5,6\} . E=\{2,4,6\}, F=\{4,5,6\}$. $E \cap F=\{4,6\}$
- If $E_{1}, E_{2}, E_{3}, \ldots$ are events, $\cap n=1 E_{i}$ is the event that consists of the outcomes that are in every E_{n} for $n=1,2,3, \ldots$.

Definition
Events E and F are said to be mutually exclusive if $E \cap F=\phi$. Mutually
exclusive events have no outcomes in common.

More about events

Definition

For events E and $F, E \cap F$ is called the intersection of E and F. It consists of all outcomes in the sample space S that are in both E and F.

Examples

- Roll of a die: $S=\{1,2,3,4,5,6\} . E=\{2,4,6\}, F=\{4,5,6\}$. $E \cap F=\{4,6\}$
- If $E_{1}, E_{2}, E_{3}, \ldots$ are events, $\cap{ }_{n=1}^{\infty} E_{i}$ is the event that consists of the outcomes that are in every E_{n} for $n=1,2,3, \ldots$.

Definition

Events E and F are said to be mutually exclusive if $E \cap F=\phi$. Mutually exclusive events have no outcomes in common.

Probability of an Event

Definition

For each event E of a sample space S, a number $P(E)$ called the probability of the event E is assigned which satisfies the following three conditions:

1. $0 \leq P(E) \leq 1$
2. $P(S)=1$
3. For any sequence of events E_{1}, E_{2}, \ldots that are pairwise mutually exclusive, i.e. $E_{n} \cap E_{m}=\phi$ for $n \neq m$, we have

Example

Probability of an Event

Definition

For each event E of a sample space S, a number $P(E)$ called the probability of the event E is assigned which satisfies the following three conditions:

1. $0 \leq P(E) \leq 1$
2. $P(S)=1$
3. For any sequence of events E_{1}, E_{2}, \ldots that are pairwise mutually exclusive, i.e. $E_{n} \cap E_{m}=\phi$ for $n \neq m$, we have

Example

Probability of an Event

Definition

For each event E of a sample space S, a number $P(E)$ called the probability of the event E is assigned which satisfies the following three conditions:

1. $0 \leq P(E) \leq 1$
2. $P(S)=1$
3. For any sequence of events E_{1}, E_{2}, \ldots that are pairwise mutually exclusive, i.e. $E_{n} \cap E_{m}=\phi$ for $n \neq m$, we have

Probability of an Event

Definition

For each event E of a sample space S, a number $P(E)$ called the probability of the event E is assigned which satisfies the following three conditions:

1. $0 \leq P(E) \leq 1$
2. $P(S)=1$
3. For any sequence of events E_{1}, E_{2}, \ldots that are pairwise mutually exclusive, i.e. $E_{n} \cap E_{m}=\phi$ for $n \neq m$, we have

$$
P\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\sum_{n=1}^{\infty} P\left(E_{n}\right)
$$

Probability of an Event

Definition

For each event E of a sample space S, a number $P(E)$ called the probability of the event E is assigned which satisfies the following three conditions:

1. $0 \leq P(E) \leq 1$
2. $P(S)=1$
3. For any sequence of events E_{1}, E_{2}, \ldots that are pairwise mutually exclusive, i.e. $E_{n} \cap E_{m}=\phi$ for $n \neq m$, we have

$$
P\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\sum_{n=1}^{\infty} P\left(E_{n}\right)
$$

Example

- Coin toss: $S=\{$ Heads, Tails $\} . P(\{$ Heads $\})=P(\{$ Tails $\})=\frac{1}{2}$.

Probabilities of Events

Equally Likely Events

If a sample space is composed of N equally likely mutually exclusive events, probability of each event is $\frac{1}{N}$.

Probability of the complement

$$
P\left(E^{c}\right)=1-P(E)
$$

$$
P(E \cup F)=P(E)+P(F)-P(E \cap F)
$$

Probabilities of Events

Equally Likely Events

If a sample space is composed of N equally likely mutually exclusive events, probability of each event is $\frac{1}{N}$.

Probability of the complement

$$
P\left(E^{c}\right)=1-P(E)
$$

$$
P(E \cup F)=P(E)+P(F)-P(E \cap F)
$$

Probabilities of Events

Equally Likely Events

If a sample space is composed of N equally likely mutually exclusive events, probability of each event is $\frac{1}{N}$.

Probability of the complement

$$
P\left(E^{c}\right)=1-P(E)
$$

Probability of the union

$$
P(E \cup F)=P(E)+P(F)-P(E \cap F)
$$

Conditional Probability

Definition

For two events E and F, the probability of the occurrence of E given that F has occurred is called the conditional probability of E given F and is denoted by $P(E \mid F)$. Furthermore, $P(E \mid F)=\frac{P(E \cap F)}{P(F)}$ whenever $P(F)>0$.
Example

- Suppose a box has balls numbered one to ten and one ball is drawn from it. $S=\{1,2, \ldots, 10\}$
- If we are told that the number on the ball is at least five, what is the probability that the number is actually ten?
- $E=\{10\}$ and $F=\{5,6, \ldots, 10\}$
- $P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{P(E)}{P(F)}=\frac{\frac{1}{10}}{\frac{6}{10}}=\frac{1}{6}$
- Suppose we are told instead that the number is at most five, then $P(E \mid F)=0$.

Conditional Probability

Definition

For two events E and F, the probability of the occurrence of E given that F has occurred is called the conditional probability of E given F and is denoted by $P(E \mid F)$. Furthermore, $P(E \mid F)=\frac{P(E \cap F)}{P(F)}$ whenever $P(F)>0$.

Example

- Suppose a box has balls numbered one to ten and one ball is drawn from it. $S=\{1,2, \ldots, 10\}$
- If we are told that the number on the ball is at least five, what is the probability that the number is actually ten?
- $E=\{10\}$ and $F=\{5,6, \ldots, 10\}$
- $P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{P(E)}{P(F)}=\frac{\frac{1}{10}}{\frac{6}{10}}=\frac{1}{6}$
- Suppose we are told instead that the number is at most five, then $P(E \mid F)=0$.

Conditional Probability

Definition

For two events E and F, the probability of the occurrence of E given that F has occurred is called the conditional probability of E given F and is denoted by $P(E \mid F)$. Furthermore, $P(E \mid F)=\frac{P(E \cap F)}{P(F)}$ whenever $P(F)>0$.

Example

- Suppose a box has balls numbered one to ten and one ball is drawn from it. $S=\{1,2, \ldots, 10\}$
- If we are told that the number on the ball is at least five, what is the probability that the number is actually ten?
- $P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{P(E)}{P(F)}=\frac{1}{\frac{10}{10}}=\frac{1}{6}$
- Suppose we are told instead that the number is at most five, then $P(E \mid F)=0$.

Conditional Probability

Definition

For two events E and F, the probability of the occurrence of E given that F has occurred is called the conditional probability of E given F and is denoted by $P(E \mid F)$. Furthermore, $P(E \mid F)=\frac{P(E \cap F)}{P(F)}$ whenever $P(F)>0$.

Example

- Suppose a box has balls numbered one to ten and one ball is drawn from it. $S=\{1,2, \ldots, 10\}$
- If we are told that the number on the ball is at least five, what is the probability that the number is actually ten?
- $E=\{10\}$ and $F=\{5,6, \ldots, 10\}$.
- Suppose we are told instead that the number is at most five, then $P(E \mid F)=0$.

Conditional Probability

Definition

For two events E and F, the probability of the occurrence of E given that F has occurred is called the conditional probability of E given F and is denoted by $P(E \mid F)$. Furthermore, $P(E \mid F)=\frac{P(E \cap F)}{P(F)}$ whenever $P(F)>0$.

Example

- Suppose a box has balls numbered one to ten and one ball is drawn from it. $S=\{1,2, \ldots, 10\}$
- If we are told that the number on the ball is at least five, what is the probability that the number is actually ten?
- $E=\{10\}$ and $F=\{5,6, \ldots, 10\}$.
- $P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{P(E)}{P(F)}=\frac{\frac{1}{10}}{\frac{1}{10}}=\frac{1}{6}$

Conditional Probability

Definition

For two events E and F, the probability of the occurrence of E given that F has occurred is called the conditional probability of E given F and is denoted by $P(E \mid F)$. Furthermore, $P(E \mid F)=\frac{P(E \cap F)}{P(F)}$ whenever $P(F)>0$.

Example

- Suppose a box has balls numbered one to ten and one ball is drawn from it. $S=\{1,2, \ldots, 10\}$
- If we are told that the number on the ball is at least five, what is the probability that the number is actually ten?
- $E=\{10\}$ and $F=\{5,6, \ldots, 10\}$.
- $P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{P(E)}{P(F)}=\frac{\frac{1}{10}}{\frac{1}{10}}=\frac{1}{6}$
- Suppose we are told instead that the number is at most five, then $P(E \mid F)=0$.

Conditional Probability

Remark

Sometimes $P(E \mid F)$ is given and we want to calculate $P(E \cap F)$.

```
Example
- Suppose Stewie takes EE706, he will receive an AA grade in it with
probability \frac{1}{2}
* Suppose he takes EE708, he will receive an AA grade in it with
probability }\frac{1}{3
- He decides to make his choice between the courses based on the flip
of a fair coin. What is the probability that he will get an AA in
EE708?
* F = Event that Stewie chooses EE708, E is the event he gets an
AA in whatever course he chooses. }P(E|F)=\frac{1}{3
- P(E\capF)=P(E|F)P(F)=\frac{1}{3}\frac{1}{2}=\frac{1}{6}
```


Conditional Probability

Remark

Sometimes $P(E \mid F)$ is given and we want to calculate $P(E \cap F)$.
Example

- Suppose Stewie takes EE706, he will receive an AA grade in it with probability $\frac{1}{2}$.
- Suppose he takes EE708, he will receive an AA grade in it with probability $\frac{1}{3}$.
- He decides to make his choice between the courses based on the flip of a fair coin. What is the probability that he will get an AA in EE708?
- $F=$ Fvent that Stewie chooses EE708, E is the event he gets an AA in whatever course he chooses. $P(E \mid F)=\frac{1}{3}$
- $P(E \cap F)=P(E \mid F) P(F)=\frac{1}{3} \frac{1}{2}=\frac{1}{6}$

Conditional Probability

Remark

Sometimes $P(E \mid F)$ is given and we want to calculate $P(E \cap F)$.
Example

- Suppose Stewie takes EE706, he will receive an AA grade in it with probability $\frac{1}{2}$.
- Suppose he takes EE708, he will receive an AA grade in it with probability $\frac{1}{3}$.
- He decides to make his choice between the courses based on the flip of a fair coin. What is the probability that he will get an AA in EE708?
- $F=$ Event that Stewie chooses EE708, E is the event he gets an AA in whatever course he chooses. $P(E \mid F)=\frac{1}{3}$
- $P(E \cap F)=P(E \mid F) P(F)=\frac{1}{3} \frac{1}{2}=\frac{1}{6}$

Conditional Probability

Remark

Sometimes $P(E \mid F)$ is given and we want to calculate $P(E \cap F)$.

Example

- Suppose Stewie takes EE706, he will receive an AA grade in it with probability $\frac{1}{2}$.
- Suppose he takes EE708, he will receive an AA grade in it with probability $\frac{1}{3}$.
- He decides to make his choice between the courses based on the flip of a fair coin. What is the probability that he will get an AA in EE708?
- $F=$ Event that Stewie chooses EE708, E is the event he gets an AA in whatever course he chooses. $P(E \mid F)=\frac{1}{3}$
- $P(E \cap F)=P(E \mid F) P(F)=\frac{1}{3} \frac{1}{2}=\frac{1}{6}$

Conditional Probability

Remark

Sometimes $P(E \mid F)$ is given and we want to calculate $P(E \cap F)$.

Example

- Suppose Stewie takes EE706, he will receive an AA grade in it with probability $\frac{1}{2}$.
- Suppose he takes EE708, he will receive an AA grade in it with probability $\frac{1}{3}$.
- He decides to make his choice between the courses based on the flip of a fair coin. What is the probability that he will get an AA in EE708?
- $F=$ Event that Stewie chooses EE708, E is the event he gets an AA in whatever course he chooses. $P(E \mid F)=\frac{1}{3}$.

Conditional Probability

Remark

Sometimes $P(E \mid F)$ is given and we want to calculate $P(E \cap F)$.
Example

- Suppose Stewie takes EE706, he will receive an AA grade in it with probability $\frac{1}{2}$.
- Suppose he takes EE708, he will receive an AA grade in it with probability $\frac{1}{3}$.
- He decides to make his choice between the courses based on the flip of a fair coin. What is the probability that he will get an AA in EE708?
- $F=$ Event that Stewie chooses EE708, E is the event he gets an AA in whatever course he chooses. $P(E \mid F)=\frac{1}{3}$.
- $P(E \cap F)=P(E \mid F) P(F)=\frac{1}{3} \frac{1}{2}=\frac{1}{6}$

Independent Events

Definition

Two events E and F are said to be independent if $P(E \cap F)=P(E) P(F)$
Example
\rightarrow Suppose we toss two fair dice. Let E_{n} denote the event that the sum of the die values is n.
\rightarrow Let F_{m} denote the event that the first die value equals m.
$E_{6}=\{(1,5),(2,4),(3,3),(4,2),(5,1)\}$ and $F_{4}=\{(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)\}$
$\Rightarrow P\left(E_{6} \cap F_{4}\right)=P(\{(4,2)\})=\frac{1}{36} \neq P\left(E_{6}\right) P\left(F_{4}\right)=\frac{5}{36} \frac{1}{6}$

Independent Events

Definition

Two events E and F are said to be independent if $P(E \cap F)=P(E) P(F)$

Example

- Suppose we toss two fair dice. Let E_{n} denote the event that the sum of the die values is n.

```
* Let }\mp@subsup{F}{m}{}\mathrm{ denote the event that the first die value equals m.
- E E = {(1,5), (2,4),(3,3),(4,2),(5,1)} and
    F}\mp@subsup{F}{4}{}={(4,1),(4,2),(4,3),(4,4),(4,5),(4, 6)
* P(E6\cap 看)=P({(4,2)})=\frac{1}{36}\not=P(\mp@subsup{E}{6}{})P(\mp@subsup{F}{4}{})=\frac{5}{36}\frac{1}{6}
```


Independent Events

Definition

Two events E and F are said to be independent if $P(E \cap F)=P(E) P(F)$

Example

- Suppose we toss two fair dice. Let E_{n} denote the event that the sum of the die values is n.
- Let F_{m} denote the event that the first die value equals m.

Independent Events

Definition

Two events E and F are said to be independent if $P(E \cap F)=P(E) P(F)$

Example

- Suppose we toss two fair dice. Let E_{n} denote the event that the sum of the die values is n.
- Let F_{m} denote the event that the first die value equals m.
- $E_{6}=\{(1,5),(2,4),(3,3),(4,2),(5,1)\}$ and $F_{4}=\{(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)\}$.
- $P\left(E_{6} \cap F_{4}\right)=P(\{(4,2)\})=\frac{1}{36} \neq P\left(E_{6}\right) P\left(F_{4}\right)=\frac{5}{36} \frac{1}{6}$

Independent Events

Definition

Two events E and F are said to be independent if $P(E \cap F)=P(E) P(F)$

Example

- Suppose we toss two fair dice. Let E_{n} denote the event that the sum of the die values is n.
- Let F_{m} denote the event that the first die value equals m.
- $E_{6}=\{(1,5),(2,4),(3,3),(4,2),(5,1)\}$ and $F_{4}=\{(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)\}$.
- $P\left(E_{6} \cap F_{4}\right)=P(\{(4,2)\})=\frac{1}{36} \neq P\left(E_{6}\right) P\left(F_{4}\right)=\frac{5}{36} \frac{1}{6}$

Independent Events

Definition

Two events E and F are said to be independent if $P(E \cap F)=P(E) P(F)$

Example

- Suppose we toss two fair dice. Let E_{n} denote the event that the sum of the die values is n.
- Let F_{m} denote the event that the first die value equals m.
- $E_{6}=\{(1,5),(2,4),(3,3),(4,2),(5,1)\}$ and $F_{4}=\{(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)\}$.
- $P\left(E_{6} \cap F_{4}\right)=P(\{(4,2)\})=\frac{1}{36} \neq P\left(E_{6}\right) P\left(F_{4}\right)=\frac{5}{36} \frac{1}{6}$

Independent Events

Remarks

- Two events are independent if $P(E \mid F)=P(E)$, i.e. the occurrence of F does not affect the probability of E.
- The probability being the same does not mean the event E is not affected.

Example

- Let E_{n} denote the event that the sum of the die values is n. Let F_{m} denote the event that the first die value equals m.
- $E_{7}=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}$, $F_{4}=\{(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)\}$, $F_{3}=\{(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)\}$
- $P\left(E_{7} \mid F_{4}\right)=\frac{P(\{(4,3)\})}{P\left(F_{4}\right)}=\frac{P(\{(3,4)\})}{P\left(F_{3}\right)}=P\left(E_{7} \mid F_{3}\right)=P\left(E_{7}\right)=\frac{1}{6}$

Independent Events

Remarks

- Two events are independent if $P(E \mid F)=P(E)$, i.e. the occurrence of F does not affect the probability of E.
- The probability being the same does not mean the event E is not affected.

Example

- Let E_{n} denote the event that the sum of the die values is n. Let F_{m} denote the event that the first die value equals m.

Independent Events

Remarks

- Two events are independent if $P(E \mid F)=P(E)$, i.e. the occurrence of F does not affect the probability of E.
- The probability being the same does not mean the event E is not affected.

Example

- Let E_{n} denote the event that the sum of the die values is n. Let F_{m} denote the event that the first die value equals m.
- $E_{7}=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}$, $F_{4}=\{(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)\}$, $F_{3}=\{(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)\}$.

Independent Events

Remarks

- Two events are independent if $P(E \mid F)=P(E)$, i.e. the occurrence of F does not affect the probability of E.
- The probability being the same does not mean the event E is not affected.

Example

- Let E_{n} denote the event that the sum of the die values is n. Let F_{m} denote the event that the first die value equals m.
- $E_{7}=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}$, $F_{4}=\{(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)\}$, $F_{3}=\{(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)\}$.
- $P\left(E_{7} \mid F_{4}\right)=\frac{P(\{(4,3)\})}{P\left(F_{4}\right)}=\frac{P(\{(3,4)\})}{P\left(F_{3}\right)}=P\left(E_{7} \mid F_{3}\right)=P\left(E_{7}\right)=\frac{1}{6}$

Bayes' Theorem

Theorem
Given two events E and F where $P(F)>0$, Bayes' theorem states that

$$
P(E \mid F)=\frac{P(F \mid E) P(E)}{P(F)} .
$$

Remarks

- The theorem is useful when calculating $P(F \mid E)$ is easier than calculating $P(E \mid F)$.
- A useful expansion of the denominator is

Bayes' Theorem

Theorem
Given two events E and F where $P(F)>0$, Bayes' theorem states that

$$
P(E \mid F)=\frac{P(F \mid E) P(E)}{P(F)} .
$$

Remarks

- The theorem is useful when calculating $P(F \mid E)$ is easier than calculating $P(E \mid F)$.
- A useful expansion of the denominator is

$$
\begin{aligned}
P(E) & =P\left[(E \cap F) \cup\left(E \cap F^{c}\right)\right]=P(E \cap F)+P\left(E \cap F^{c}\right) \\
& =P(E \mid F) P(F)+P\left(E \mid F^{c}\right) P\left(F^{c}\right)
\end{aligned}
$$

What is a random variable?

Definition
A random variable is a real-valued function defined on a sample space.
Examples

- Coin toss: $S=\{$ Heads, Tails $\}$. Random variable $X=1$ if outcome is \{Heads\} and 0 otherwise.
- Tossing of fair two dice: $S=\{(i, j): 1 \leq i, j \leq 6\}$
- Random variable $X=$ Sum of the values in the outcome $=i+j$ for outcome (i, j).
- Since the value of a random variable depends on the outcome of an experiment, we can think of the set of possible values as a new sample space and probabilities can be assigned to subsets of this space.
- $P(X=4)=P\{(1,3),(2,2),(3,1)\}=\frac{3}{36}$

What is a random variable?

Definition

A random variable is a real-valued function defined on a sample space.

Examples

- Coin toss: $S=\{$ Heads, Tails $\}$. Random variable $X=1$ if outcome is \{Heads\} and 0 otherwise.
- Random variable $X=$ Sum of the values in the outcome $=i+j$ for outcome (i,j).
\Rightarrow Since the value of a random variable depends on the outcome of an experiment, we can think of the set of possible values as a new sample space and probabilities can be assigned to subsets of this space.
$\rightarrow P(X=4)=P\{(1,3),(2,2),(3,1)\}=\frac{3}{36}$

What is a random variable?

Definition

A random variable is a real-valued function defined on a sample space.

Examples

- Coin toss: $S=\{$ Heads, Tails $\}$. Random variable $X=1$ if outcome is \{Heads\} and 0 otherwise.
- Tossing of fair two dice: $S=\{(i, j): 1 \leq i, j \leq 6\}$.
- Random variable $X=$ Sum of the values in the outcome $=i+j$ for outcome (i, j).
- Since the value of a random variable depends on the outcome of an experiment, we can think of the set of possible values as a new sample space and probabilities can be assigned to subsets of this space.
- $P(X=4)=P\{(1,3),(2,2),(3,1)\}=\frac{3}{36}$

What is a random variable?

Definition

A random variable is a real-valued function defined on a sample space.

Examples

- Coin toss: $S=\{$ Heads, Tails $\}$. Random variable $X=1$ if outcome is \{Heads\} and 0 otherwise.
- Tossing of fair two dice: $S=\{(i, j): 1 \leq i, j \leq 6\}$.
- Random variable $X=$ Sum of the values in the outcome $=i+j$ for outcome (i, j).
- Since the value of a random variable depends on the outcome of an experiment, we can think of the set of possible values as a new sample space and probabilities can be assigned to subsets of this space.
- $P(X=4)=P\{(1,3),(2,2),(3,1)\}=\frac{3}{36}$

What is a random variable?

Definition

A random variable is a real-valued function defined on a sample space.

Examples

- Coin toss: $S=\{$ Heads, Tails $\}$. Random variable $X=1$ if outcome is \{Heads\} and 0 otherwise.
- Tossing of fair two dice: $S=\{(i, j): 1 \leq i, j \leq 6\}$.
- Random variable $X=$ Sum of the values in the outcome $=i+j$ for outcome (i, j).
- Since the value of a random variable depends on the outcome of an experiment, we can think of the set of possible values as a new sample space and probabilities can be assigned to subsets of this space.
- $P(X=4)=P\{(1,3),(2,2),(3,1)\}=\frac{3}{36}$

Cumulative distribution function

Definition

The cumulative distribution function (cdf) $F(\cdot)$ of a random variable X is defined for any real number $a,-\infty<a<\infty$ by

$$
F(a)=P(X \leq a)
$$

- $F(a)$ is a nondecreasing function of a.
$-F(\infty)=1$
$\Rightarrow F(-\infty)=0$.

Cumulative distribution function

Definition

The cumulative distribution function (cdf) $F(\cdot)$ of a random variable X is defined for any real number $a,-\infty<a<\infty$ by

$$
F(a)=P(X \leq a)
$$

Properties

- $F(a)$ is a nondecreasing function of a.
- $F(-\infty)=0$.

Cumulative distribution function

Definition

The cumulative distribution function (cdf) $F(\cdot)$ of a random variable X is defined for any real number $a,-\infty<a<\infty$ by

$$
F(a)=P(X \leq a)
$$

Properties

- $F(a)$ is a nondecreasing function of a.
- $F(\infty)=1$.
$\Rightarrow F(-\infty)=0$.

Cumulative distribution function

Definition

The cumulative distribution function (cdf) $F(\cdot)$ of a random variable X is defined for any real number $a,-\infty<a<\infty$ by

$$
F(a)=P(X \leq a)
$$

Properties

- $F(a)$ is a nondecreasing function of a.
- $F(\infty)=1$.
- $F(-\infty)=0$.

Discrete Random Variable

Definition

A discrete random variable is random variable (RV) whose range is finite or countable, i.e. it takes a finite or countable number of values.

```
Definition
For a discrete RV, we define the probability mass function p(a) as
```

$$
P(a)=P[X=a]
$$

Discrete Random Variable

Definition

A discrete random variable is random variable (RV) whose range is finite or countable, i.e. it takes a finite or countable number of values.

Definition

For a discrete RV, we define the probability mass function $p(a)$ as

$$
p(a)=P[X=a]
$$

- If X takes on values $x_{1}, x_{2}, x_{3}, \ldots$, then $p\left(x_{i}\right)>0, i=1,2, \ldots$ and

Discrete Random Variable

Definition

A discrete random variable is random variable (RV) whose range is finite or countable, i.e. it takes a finite or countable number of values.

Definition

For a discrete RV, we define the probability mass function $p(a)$ as

$$
p(a)=P[X=a]
$$

Properties

- If X takes on values $x_{1}, x_{2}, x_{3}, \ldots$, then $p\left(x_{i}\right)>0, i=1,2, \ldots$ and $p(x)=0$ for all other values x.

Discrete Random Variable

Definition

A discrete random variable is random variable (RV) whose range is finite or countable, i.e. it takes a finite or countable number of values.

Definition

For a discrete RV, we define the probability mass function $p(a)$ as

$$
p(a)=P[X=a]
$$

Properties

- If X takes on values $x_{1}, x_{2}, x_{3}, \ldots$, then $p\left(x_{i}\right)>0, i=1,2, \ldots$ and $p(x)=0$ for all other values x.
- $\sum_{i=1}^{\infty} p\left(x_{i}\right)=1$

Discrete Random Variable

Definition

A discrete random variable is random variable (RV) whose range is finite or countable, i.e. it takes a finite or countable number of values.

Definition

For a discrete RV, we define the probability mass function $p(a)$ as

$$
p(a)=P[X=a]
$$

Properties

- If X takes on values $x_{1}, x_{2}, x_{3}, \ldots$, then $p\left(x_{i}\right)>0, i=1,2, \ldots$ and $p(x)=0$ for all other values x.
- $\sum_{i=1}^{\infty} p\left(x_{i}\right)=1$
- $F(a)=\sum_{x_{i} \leq a} p\left(x_{i}\right)$

The Bernoulli Random Variable

- Consider an experiment whose outcomes can be classified as either a success or a failure.
- Let X equal 1 if the outcome is a success and 0 if the outcome is a failure
- A Bernoulli random variable is a random variable whose probability mass function of X is given by

where $q, 0 \leq q \leq 1$ is the probability that the experiment is a success.

The Bernoulli Random Variable

- Consider an experiment whose outcomes can be classified as either a success or a failure.
- Let X equal 1 if the outcome is a success and 0 if the outcome is a failure
- A Bernoulli random variable is a random variable whose probability mass function of X is given by

where $q, 0 \leq q \leq 1$ is the probability that the experiment is a success.

The Bernoulli Random Variable

- Consider an experiment whose outcomes can be classified as either a success or a failure.
- Let X equal 1 if the outcome is a success and 0 if the outcome is a failure
- A Bernoulli random variable is a random variable whose probability mass function of X is given by

$$
\begin{aligned}
& p(0)=P[X=0]=1-q \\
& p(1)=P[X=1]=q
\end{aligned}
$$

where $q, 0 \leq q \leq 1$ is the probability that the experiment is a success.

The Binomial Random Variable

- Suppose that n independent experiments or trials, each of which results in a success with probability q and in a failure with probability $1-q$.
\rightarrow If X represents the number of successes in the n trials, then X is said to be a binomial random variable.
- The probability mass function of a binomial random variable having parameters (n, q) is given by

The Binomial Random Variable

- Suppose that n independent experiments or trials, each of which results in a success with probability q and in a failure with probability $1-q$.
- If X represents the number of successes in the n trials, then X is said to be a binomial random variable.
- The probability mass function of a binomial random variable having parameters (n, q) is given by

The Binomial Random Variable

- Suppose that n independent experiments or trials, each of which results in a success with probability q and in a failure with probability $1-q$.
- If X represents the number of successes in the n trials, then X is said to be a binomial random variable.
- The probability mass function of a binomial random variable having parameters (n, q) is given by

$$
p(i)=\binom{n}{i} q^{i}(1-q)^{n-i}, \quad i=0,1,2, \ldots
$$

where

$$
\binom{n}{i}=\frac{n!}{(n-i)!i!}
$$

The Geometric Random Variable

- Suppose that independent trials, each having probability q of being a success are performed until a success occurs.
- If X represents the number of trials required until the first success, then X is said to be a geometric random variable with parameter q.
- The probability mass function of a geometric random variable having parameter q is given by

$$
p(n)=P[X=n]=(1-q)^{n-1} q, \quad n=1,2,
$$

The Geometric Random Variable

- Suppose that independent trials, each having probability q of being a success are performed until a success occurs.
- If X represents the number of trials required until the first success, then X is said to be a geometric random variable with parameter q.
- The probability mass function of a geometric random variable having parameter q is given by

The Geometric Random Variable

- Suppose that independent trials, each having probability q of being a success are performed until a success occurs.
- If X represents the number of trials required until the first success, then X is said to be a geometric random variable with parameter q.
- The probability mass function of a geometric random variable having parameter q is given by

$$
p(n)=P[X=n]=(1-q)^{n-1} q, \quad n=1,2, \ldots
$$

Continuous Random Variable

- A continuous random variable is a random variable which can take on an uncountable number of values.

Continuous Random Variable

- A continuous random variable is a random variable which can take on an uncountable number of values.
- A random variable X is said to be a continuous random variable if there exists a non-negative function $f(x)$ defined for all real $x \in\{-\infty, \infty\}$, having the property that for any set B of real numbers

$$
P[X \in B]=\int_{B} f(x) d x
$$

The function $f(x)$ is said to be the pr
of the random variable X.
$1=\{X \in(-\infty, \infty)\}=\int_{-\infty}^{\infty} f(x) d x$

Continuous Random Variable

- A continuous random variable is a random variable which can take on an uncountable number of values.
- A random variable X is said to be a continuous random variable if there exists a non-negative function $f(x)$ defined for all real $x \in\{-\infty, \infty\}$, having the property that for any set B of real numbers

$$
P[X \in B]=\int_{B} f(x) d x
$$

The function $f(x)$ is said to be the probability density function(pdf) of the random variable X.

Continuous Random Variable

- A continuous random variable is a random variable which can take on an uncountable number of values.
- A random variable X is said to be a continuous random variable if there exists a non-negative function $f(x)$ defined for all real $x \in\{-\infty, \infty\}$, having the property that for any set B of real numbers

$$
P[X \in B]=\int_{B} f(x) d x
$$

The function $f(x)$ is said to be the probability density function(pdf) of the random variable X.

- $1=\{X \in(-\infty, \infty)\}=\int_{-\infty}^{\infty} f(x) d x$

Continuous Random Variable

- A continuous random variable is a random variable which can take on an uncountable number of values.
- A random variable X is said to be a continuous random variable if there exists a non-negative function $f(x)$ defined for all real $x \in\{-\infty, \infty\}$, having the property that for any set B of real numbers

$$
P[X \in B]=\int_{B} f(x) d x
$$

The function $f(x)$ is said to be the probability density function(pdf) of the random variable X.

- $1=\{X \in(-\infty, \infty)\}=\int_{-\infty}^{\infty} f(x) d x$
- $P\{a \leq X \leq b\}=\int_{a}^{b} f(x) d x$

$$
; P\{X=
$$

\square

Continuous Random Variable

- A continuous random variable is a random variable which can take on an uncountable number of values.
- A random variable X is said to be a continuous random variable if there exists a non-negative function $f(x)$ defined for all real $x \in\{-\infty, \infty\}$, having the property that for any set B of real numbers

$$
P[X \in B]=\int_{B} f(x) d x
$$

The function $f(x)$ is said to be the probability density function(pdf) of the random variable X.

- $1=\{X \in(-\infty, \infty)\}=\int_{-\infty}^{\infty} f(x) d x$
- $P\{a \leq X \leq b\}=\int_{a}^{b} f(x) d x ; P\{X=a\}=\int_{a}^{a} f(x) d x=0$

Continuous Random Variable

- A continuous random variable is a random variable which can take on an uncountable number of values.
- A random variable X is said to be a continuous random variable if there exists a non-negative function $f(x)$ defined for all real $x \in\{-\infty, \infty\}$, having the property that for any set B of real numbers

$$
P[X \in B]=\int_{B} f(x) d x
$$

The function $f(x)$ is said to be the probability density function(pdf) of the random variable X.

- $1=\{X \in(-\infty, \infty)\}=\int_{-\infty}^{\infty} f(x) d x$
- $P\{a \leq X \leq b\}=\int_{a}^{b} f(x) d x ; P\{X=a\}=\int_{a}^{a} f(x) d x=0$
- $P\left\{a-\frac{\epsilon}{2} \leq X \leq a+\frac{\epsilon}{2}\right\}=\int_{a-\frac{\epsilon}{2}}^{a+\frac{\epsilon}{2} b} f(x) d x \approx \epsilon f(a)$

Continuous Random Variable

- A continuous random variable is a random variable which can take on an uncountable number of values.
- A random variable X is said to be a continuous random variable if there exists a non-negative function $f(x)$ defined for all real $x \in\{-\infty, \infty\}$, having the property that for any set B of real numbers

$$
P[X \in B]=\int_{B} f(x) d x
$$

The function $f(x)$ is said to be the probability density function(pdf) of the random variable X.

- $1=\{X \in(-\infty, \infty)\}=\int_{-\infty}^{\infty} f(x) d x$
- $P\{a \leq X \leq b\}=\int_{a}^{b} f(x) d x ; P\{X=a\}=\int_{a}^{a} f(x) d x=0$
- $P\left\{a-\frac{\epsilon}{2} \leq X \leq a+\frac{\epsilon}{2}\right\}=\int_{a-\frac{\epsilon}{2}}^{a+\frac{\epsilon}{2} b} f(x) d x \approx \epsilon f(a)$
- $F(a)=P\{X \in(-\infty, a]\}=\int_{-\infty}^{a} f(x) d x$

Continuous Random Variables

- X is a uniform random variable on the interval (a, b) if its pdf is given by

$$
f(x)= \begin{cases}\frac{1}{b-a}, & \text { if } a<x<b \\ 0, & \text { otherwise }\end{cases}
$$

- X is a Gaussian or normal random variable with parameters μ and σ^{2} if its pdf is given by

Continuous Random Variables

- X is a uniform random variable on the interval (a, b) if its pdf is given by

$$
f(x)= \begin{cases}\frac{1}{b-a}, & \text { if } a<x<b \\ 0, & \text { otherwise }\end{cases}
$$

- X is a Gaussian or normal random variable with parameters μ and σ^{2} if its pdf is given by

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}, \quad-\infty<x<\infty
$$

Expectation of a Random Variable

- If X is a discrete random variable with probability mass function $p(x)$, the expected value of X is given by

$$
E[X]=\sum_{x: p(x)>0} x p(x) .
$$

- If X is a continuous random variable with probability density function $f(x)$, the expected value of X is given by

Expectation of a Random Variable

- If X is a discrete random variable with probability mass function $p(x)$, the expected value of X is given by

$$
E[X]=\sum_{x: p(x)>0} x p(x) .
$$

- If X is a continuous random variable with probability density function $f(x)$, the expected value of \mathbf{X} is given by

$$
E[X]=\int_{-\infty}^{\infty} x f(x) d x
$$

The End of the Beginning

The End of the Beginning

