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Our approach

I Two approaches exist to the study of probability theory
I Rigorous approach based on tools of measure theory
I Nonrigorous approach with focus on problem-solving methods

I Our goal is to analyze the performance of network protocols using
the tools of probability theory

I For this course, second approach is sufficient
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What is a sample space?

I We perform an experiment with unpredictable outcome
I All possible outcomes are known

Definition
A sample space is the set of all possible outcomes of an experiment and
is denoted by S .

Examples

I Coin toss: S = {Heads,Tails}
I Roll of a die: S = {1, 2, 3, 4, 5, 6}
I Tossing of two coins: S = {(H,H), (T ,H), (H,T ), (T ,T )}
I A box contains three balls: one red, one green and one blue. Ball is

drawn, replaced and a ball is drawn again. What is S? Without the
replacement, what is S?

I Coin is tossed until heads appear. What is S?

I Experiment is measuring a car’s lifetime. S = [0,∞)
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What is an event?

Definition
An event is any subset of a sample space.

Examples

I Coin toss: S = {Heads,Tails}. E = {Heads} is the event that a
head appears on the flip of a coin.

I Roll of a die: S = {1, 2, 3, 4, 5, 6}. E = {2, 4, 6} is the event that an
even number appears when the die is rolled.

I Experiment is measuring a car’s lifetime. S = [0,∞). E = (1, 3) is
the event that the car stops working between one and three years.
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More about events

Definition
For an event E , E c is the complement of E . It consists of all outcomes in
the sample space S that are not in E .

Examples

I Roll of a die: S = {1, 2, 3, 4, 5, 6}. E = {2, 4, 6}. E c = {1, 3, 5}.
I In general, Sc = φ where φ denotes the empty set corresponding to

the null event consisting of no outcomes.
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More about events

Definition
For events E and F , E ∪ F is called the union of E and F . It consists of
all outcomes in the sample space S that are either in E or F or in both E
and F .

Examples

I Roll of a die: S = {1, 2, 3, 4, 5, 6}. E = {2, 4, 6}, F = {4, 5, 6}.
E ∪ F = {2, 4, 5, 6}

I If E1,E2,E3, . . . are events, ∪∞n=1Ei is the event that consists of all
the outcomes that are in En for at least one value of n = 1, 2, 3, . . ..
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Probability of an Event

Definition
For each event E of a sample space S , a number P(E ) called the
probability of the event E is assigned which satisfies the following three
conditions:

1. 0 ≤ P(E ) ≤ 1

2. P(S) = 1

3. For any sequence of events E1,E2, . . . that are pairwise mutually
exclusive, i.e. En ∩ Em = φ for n 6= m, we have

P

( ∞⋃
n=1

En

)
=
∞∑

n=1

P(En)

Example

I Coin toss: S = {Heads,Tails}. P({Heads}) = P({Tails}) = 1
2 .
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Probabilities of Events

Equally Likely Events
If a sample space is composed of N equally likely mutually exclusive
events, probability of each event is 1

N .

Probability of the complement

P(E c) = 1− P(E )

Probability of the union

P(E ∪ F ) = P(E ) + P(F )− P(E ∩ F )
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Conditional Probability

Definition
For two events E and F , the probability of the occurrence of E given that
F has occurred is called the conditional probability of E given F and is

denoted by P(E |F ). Furthermore, P(E |F ) = P(E∩F )
P(F ) whenever P(F ) > 0.

Example

I Suppose a box has balls numbered one to ten and one ball is drawn
from it. S = {1, 2, . . . , 10}

I If we are told that the number on the ball is at least five, what is the
probability that the number is actually ten?

I E = {10} and F = {5, 6, . . . , 10}.
I P(E |F ) = P(E∩F )

P(F ) = P(E)
P(F ) =

1
10
6
10

= 1
6

I Suppose we are told instead that the number is at most five, then
P(E |F ) = 0.
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Conditional Probability

Remark
Sometimes P(E |F ) is given and we want to calculate P(E ∩ F ).

Example

I Suppose Stewie takes EE706, he will receive an AA grade in it with
probability 1

2 .

I Suppose he takes EE708, he will receive an AA grade in it with
probability 1

3 .

I He decides to make his choice between the courses based on the flip
of a fair coin. What is the probability that he will get an AA in
EE708?

I F = Event that Stewie chooses EE708, E is the event he gets an
AA in whatever course he chooses. P(E |F ) = 1

3 .

I P(E ∩ F ) = P(E |F )P(F ) = 1
3

1
2 = 1

6
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Independent Events

Definition
Two events E and F are said to be independent if P(E ∩F ) = P(E )P(F )

Example

I Suppose we toss two fair dice. Let En denote the event that the sum
of the die values is n.

I Let Fm denote the event that the first die value equals m.

I E6 = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)} and
F4 = {(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)}.

I P(E6 ∩ F4) = P({(4, 2)}) = 1
36 6= P(E6)P(F4) = 5

36
1
6



Independent Events

Definition
Two events E and F are said to be independent if P(E ∩F ) = P(E )P(F )

Example

I Suppose we toss two fair dice. Let En denote the event that the sum
of the die values is n.

I Let Fm denote the event that the first die value equals m.

I E6 = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)} and
F4 = {(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)}.

I P(E6 ∩ F4) = P({(4, 2)}) = 1
36 6= P(E6)P(F4) = 5

36
1
6



Independent Events

Definition
Two events E and F are said to be independent if P(E ∩F ) = P(E )P(F )

Example

I Suppose we toss two fair dice. Let En denote the event that the sum
of the die values is n.

I Let Fm denote the event that the first die value equals m.

I E6 = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)} and
F4 = {(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)}.

I P(E6 ∩ F4) = P({(4, 2)}) = 1
36 6= P(E6)P(F4) = 5

36
1
6



Independent Events

Definition
Two events E and F are said to be independent if P(E ∩F ) = P(E )P(F )

Example

I Suppose we toss two fair dice. Let En denote the event that the sum
of the die values is n.

I Let Fm denote the event that the first die value equals m.

I E6 = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)} and
F4 = {(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)}.

I P(E6 ∩ F4) = P({(4, 2)}) = 1
36 6= P(E6)P(F4) = 5

36
1
6



Independent Events

Definition
Two events E and F are said to be independent if P(E ∩F ) = P(E )P(F )

Example

I Suppose we toss two fair dice. Let En denote the event that the sum
of the die values is n.

I Let Fm denote the event that the first die value equals m.

I E6 = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)} and
F4 = {(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)}.

I P(E6 ∩ F4) = P({(4, 2)}) = 1
36 6= P(E6)P(F4) = 5

36
1
6



Independent Events

Definition
Two events E and F are said to be independent if P(E ∩F ) = P(E )P(F )

Example

I Suppose we toss two fair dice. Let En denote the event that the sum
of the die values is n.

I Let Fm denote the event that the first die value equals m.

I E6 = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)} and
F4 = {(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)}.

I P(E6 ∩ F4) = P({(4, 2)}) = 1
36 6= P(E6)P(F4) = 5

36
1
6



Independent Events

Remarks

I Two events are independent if P(E |F ) = P(E ), i.e. the occurrence
of F does not affect the probability of E .

I The probability being the same does not mean the event E is not
affected.

Example

I Let En denote the event that the sum of the die values is n. Let Fm

denote the event that the first die value equals m.

I E7 = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)},
F4 = {(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)},
F3 = {(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)}.

I P(E7|F4) = P({(4,3)})
P(F4)

= P({(3,4)})
P(F3)

= P(E7|F3) = P(E7) = 1
6
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Bayes’ Theorem

Theorem
Given two events E and F where P(F ) > 0, Bayes’ theorem states that

P(E |F ) =
P(F |E )P(E )

P(F )
.

Remarks

I The theorem is useful when calculating P(F |E ) is easier than
calculating P(E |F ).

I A useful expansion of the denominator is

P(E ) = P[(E ∩ F ) ∪ (E ∩ F c)] = P(E ∩ F ) + P(E ∩ F c)

= P(E |F )P(F ) + P(E |F c)P(F c)
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What is a random variable?

Definition
A random variable is a real-valued function defined on a sample space.

Examples

I Coin toss: S = {Heads,Tails}. Random variable X = 1 if outcome is
{Heads} and 0 otherwise.

I Tossing of fair two dice: S = {(i , j) : 1 ≤ i , j ≤ 6}.
I Random variable X = Sum of the values in the outcome = i + j for

outcome (i , j).

I Since the value of a random variable depends on the outcome of an
experiment, we can think of the set of possible values as a new
sample space and probabilities can be assigned to subsets of this
space.

I P(X = 4) = P{(1, 3), (2, 2), (3, 1)} = 3
36
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Cumulative distribution function

Definition
The cumulative distribution function (cdf) F (·) of a random variable X is
defined for any real number a, −∞ < a <∞ by

F (a) = P(X ≤ a)

Properties

I F (a) is a nondecreasing function of a.

I F (∞) = 1.

I F (−∞) = 0.
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Discrete Random Variable

Definition
A discrete random variable is random variable (RV) whose range is finite
or countable, i.e. it takes a finite or countable number of values.

Definition
For a discrete RV, we define the probability mass function p(a) as

p(a) = P[X = a]

Properties

I If X takes on values x1, x2, x3, . . ., then p(xi ) > 0, i = 1, 2, . . . and
p(x) = 0 for all other values x .

I
∑∞

i=1 p(xi ) = 1

I F (a) =
∑

xi≤a p(xi )
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The Bernoulli Random Variable

I Consider an experiment whose outcomes can be classified as either a
success or a failure.

I Let X equal 1 if the outcome is a success and 0 if the outcome is a
failure

I A Bernoulli random variable is a random variable whose probability
mass function of X is given by

p(0) = P[X = 0] = 1− q

p(1) = P[X = 1] = q

where q, 0 ≤ q ≤ 1 is the probability that the experiment is a
success.
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The Binomial Random Variable

I Suppose that n independent experiments or trials, each of which
results in a success with probability q and in a failure with
probability 1− q.

I If X represents the number of successes in the n trials, then X is
said to be a binomial random variable.

I The probability mass function of a binomial random variable having
parameters (n, q) is given by

p(i) =

(
n

i

)
qi (1− q)n−i , i = 0, 1, 2, . . .

where (
n

i

)
=

n!

(n − i)!i !
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The Geometric Random Variable

I Suppose that independent trials, each having probability q of being
a success are performed until a success occurs.

I If X represents the number of trials required until the first success,
then X is said to be a geometric random variable with parameter q.

I The probability mass function of a geometric random variable having
parameter q is given by

p(n) = P[X = n] = (1− q)n−1q, n = 1, 2, . . .
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Continuous Random Variable

I A continuous random variable is a random variable which can take
on an uncountable number of values.

I A random variable X is said to be a continuous random variable if
there exists a non-negative function f (x) defined for all real
x ∈ {−∞,∞}, having the property that for any set B of real
numbers

P[X ∈ B] =

∫
B

f (x) dx

The function f (x) is said to be the probability density function(pdf)
of the random variable X .

I 1 = {X ∈ (−∞,∞)} =
∫∞
−∞ f (x) dx

I P{a ≤ X ≤ b} =
∫ b

a
f (x) dx ;P{X = a} =

∫ a

a
f (x) dx = 0

I P{a− ε
2 ≤ X ≤ a + ε

2} =
∫ a+ ε

2 b

a− ε
2

f (x) dx ≈ εf (a)

I F (a) = P{X ∈ (−∞, a]} =
∫ a

−∞ f (x) dx
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on an uncountable number of values.

I A random variable X is said to be a continuous random variable if
there exists a non-negative function f (x) defined for all real
x ∈ {−∞,∞}, having the property that for any set B of real
numbers

P[X ∈ B] =

∫
B

f (x) dx

The function f (x) is said to be the probability density function(pdf)
of the random variable X .
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Continuous Random Variables

I X is a uniform random variable on the interval (a, b) if its pdf is
given by

f (x) =

{
1

b−a , if a < x < b

0, otherwise

I X is a Gaussian or normal random variable with parameters µ and
σ2 if its pdf is given by

f (x) =
1√

2πσ2
e−(x−µ)2/2σ2

, −∞ < x <∞
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Expectation of a Random Variable

I If X is a discrete random variable with probability mass function
p(x), the expected value of X is given by

E [X ] =
∑

x :p(x)>0

xp(x).

I If X is a continuous random variable with probability density
function f (x), the expected value of X is given by

E [X ] =

∫ ∞
−∞

xf (x) dx
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