## Indian Institute of Technology Bombay Department of Electrical Engineering

| Handout 30           | EE 706 Communication Networks |
|----------------------|-------------------------------|
| Solutions to Quiz 10 | April 14, 2010                |

For the network shown below, assume that link state routing is used to build the routing tables. Suppose that node A has received the link state packets from all the other nodes. Detail the steps of Dijkstra's algorithm for calculating the shortest paths at node A by adding the rows to the table given below.



| Step | M       | N - M         | Cost to $B$ , Next hop to $B$ | Ct to $C$ , NH to $C$ | Ct to $D$ , NH to $D$ |
|------|---------|---------------|-------------------------------|-----------------------|-----------------------|
| 1    | $\{A\}$ | $\{B, C, D\}$ | 5,B                           | 10,C                  | $\infty$ ,-           |
|      |         |               |                               |                       |                       |

Psuedocode for Dijkstra's algorithm is given below for your convenience. It calculates the shortest paths at a source node S. N is the set of all nodes,  $C_S(X)$  is the cost of reaching node X from node S and l(S, X) is the cost of the edge from node S to node X.

$$\begin{split} M &= \{S\} \\ \text{for each } X \text{ in } N - \{S\} \\ C_S(X) &= l(S, X) \\ \text{if } C_S(X) < \infty, \text{ next hop for } X \text{ is } X \text{ itself} \\ \text{while } (N \neq M) \\ M &= M \cup \{Y\} \text{ such that } C_S(Y) \text{ is the minimum among all } Y \text{ in } (N - M) \\ \text{for each } X \text{ in } (N - M) \\ C_S(X) &= \min\{C_S(X), C_S(Y) + l(Y, X)\} \\ \text{ if } C_S(X) \text{ has changed, next hop for } X \text{ is the next hop to reach } Y \text{ from } S \end{split}$$

Answer.

| Step | M                | N - M         | Cost to $B$ , Next hop to $B$ | Ct to $C$ , NH to $C$ | Ct to $D$ , NH to $D$ |
|------|------------------|---------------|-------------------------------|-----------------------|-----------------------|
| 1    | $\{A\}$          | $\{B, C, D\}$ | 5,B                           | 10,C                  | $\infty$ ,-           |
| 2    | $\{A, B\}$       | $\{C, D\}$    | 5,B                           | $^{8,B}$              | 16, B                 |
| 3    | $\{A, B, C\}$    | $\{D\}$       | 5,B                           | $^{8,B}$              | 10,B                  |
| 4    | $\{A, B, C, D\}$ | {}            | 5,B                           | 8,B                   | 10,B                  |