Indian Institute of Technology Bombay

Department of Electrical Engineering

For the network shown below, assume that link state routing is used to build the routing tables. Suppose that node A has received the link state packets from all the other nodes. Detail the steps of Dijkstra's algorithm for calculating the shortest paths at node A by adding the rows to the table given below.

Step	M	$N-M$	Cost to B, Next hop to B	Ct to C, NH to C	Ct to D, NH to D
1	$\{A\}$	$\{B, C, D\}$	$5, B$	$10, C$	$\infty,-$

Psuedocode for Dijkstra's algorithm is given below for your convenience. It calculates the shortest paths at a source node $S . N$ is the set of all nodes, $C_{S}(X)$ is the cost of reaching node X from node S and $l(S, X)$ is the cost of the edge from node S to node X.
$M=\{S\}$
for each X in $N-\{S\}$
$C_{S}(X)=l(S, X)$
if $C_{S}(X)<\infty$, next hop for X is X itself
while $(N \neq M)$
$M=M \cup\{Y\}$ such that $C_{S}(Y)$ is the minimum among all Y in $(N-M)$
for each X in $(N-M)$
$C_{S}(X)=\min \left\{C_{S}(X), C_{S}(Y)+l(Y, X)\right\}$
if $C_{S}(X)$ has changed, next hop for X is the next hop to reach Y from S

Answer.

Step	M	$N-M$	Cost to B, Next hop to B	Ct to C, NH to C	Ct to D, NH to D
1	$\{A\}$	$\{B, C, D\}$	$5, B$	$10, C$	$\infty,-$
2	$\{A, B\}$	$\{C, D\}$	$5, B$	$8, B$	$16, B$
3	$\{A, B, C\}$	$\{D\}$	$5, B$	$8, B$	$10, B$
4	$\{A, B, C, D\}$	$\}$	$5, B$	$8, B$	$10, B$

