Department of Electrical Engineering

For the network shown below, assume that link state routing is used to build the routing tables. Suppose that node A has received the link state packets from all the other nodes. Detail the steps of Dijkstra's algorithm for calculating the shortest paths at node A by adding the rows to the table given below.

Step	M	$N-M$	Cost to B, Next hop to B	Ct to C, NH to C	Ct to D, NH to D
1	$\{A\}$	$\{B, C, D\}$	$5, B$	$10, C$	$\infty,-$

Psuedocode for Dijkstra's algorithm is given below for your convenience. It calculates the shortest paths at a source node $S . N$ is the set of all nodes, $C_{S}(X)$ is the cost of reaching node X from node S and $l(S, X)$ is the cost of the edge from node S to node X.

$$
\begin{aligned}
& M=\{S\} \\
& \text { for each } X \text { in } N-\{S\} \\
& \quad C_{S}(X)=l(S, X) \\
& \text { if } C_{S}(X)<\infty, \text { next hop for } X \text { is } X \text { itself } \\
& \text { while }(N \neq M) \\
& \quad M=M \cup\{Y\} \text { such that } C_{S}(Y) \text { is the minimum among all } Y \text { in }(N-M) \\
& \text { for each } X \text { in }(N-M) \\
& \quad C_{S}(X)=\min \left\{C_{S}(X), C_{S}(Y)+l(Y, X)\right\} \\
& \quad \text { if } C_{S}(X) \text { has changed, next hop for } X \text { is the next hop to reach } Y \text { from } S
\end{aligned}
$$

