Indian Institute of Technology Bombay Department of Electrical Engineering

Handout 27	EE 706 Communication Networks
Quiz 10 : 10 points	April 1, 2010

For the network shown below, assume that link state routing is used to build the routing tables. Suppose that node A has received the link state packets from all the other nodes. Detail the steps of Dijkstra's algorithm for calculating the shortest paths at node A by adding the rows to the table given below.

Step	M	N - M	Cost to B , Next hop to B	Ct to C , NH to C	Ct to D , NH to D
1	$\{A\}$	$\{B, C, D\}$	5,B	10,C	∞ ,-

Psuedocode for Dijkstra's algorithm is given below for your convenience. It calculates the shortest paths at a source node S. N is the set of all nodes, $C_S(X)$ is the cost of reaching node X from node S and l(S, X) is the cost of the edge from node S to node X.

 $M = \{S\}$ for each X in $N - \{S\}$ $C_S(X) = l(S, X)$ if $C_S(X) < \infty$, next hop for X is X itself while $(N \neq M)$ $M = M \cup \{Y\}$ such that $C_S(Y)$ is the minimum among all Y in (N - M)for each X in (N - M) $C_S(X) = \min\{C_S(X), C_S(Y) + l(Y, X)\}$ if $C_S(X)$ has changed, next hop for X is the next hop to reach Y from S