Indian Institute of Technology Bombay Department of Electrical Engineering

Handout 12	EE 706 Communication Networks
Solutions to Quiz 5	February 11, 2010

Please READ THE QUESTIONS CAREFULLY before answering.

- 1. A polynomial of degree k is said to be primitive if the smallest value of m for which it divides $X^m + 1$ is $2^k 1$.
 - (a) Show that $X^3 + X + 1$ is a primitive polynomial. [3 points] Ans.

 $X^3 + X + 1$ is a polynomial of degree 3. For it to be a primitive polynomial, the smallest value of m for which it divides $X^m + 1$ is $2^3 - 1 = 7$. So it should divide $X^7 + 1$ but not $X^6 + 1$, $X^5 + 1$, $X^4 + 1$, $X^3 + 1$, $X^2 + 1$, X + 1 and 1. [You should do the divisions to check this is the case].

(b) Show that $X^3 + 1$ is not a primitive polynomial. [3 points]

Ans.

 $X^3 + 1$ is a polynomial of degree 3. For it to be a primitive polynomial, the smallest value of m for which it divides $X^m + 1$ is $2^3 - 1 = 7$. So it should divide $X^7 + 1$ but not $X^6 + 1$, $X^5 + 1$, $X^4 + 1$, $X^3 + 1$, $X^2 + 1$, X + 1 and 1. But it divides itself. Hence it is not a primitive polynomial.

2. Does X + 1 divide $X^{2^n} + X^{2^{n-1}} + X^{2^{n-2}} + \dots + X + 1$ where n is a non-negative integer? [4 points]

Ans.

If n is a non-negative integer, $n \ge 0$, i.e. $n \in \{0, 1, 2, 3, ...\}$. Let $g_n(X) = X^{2^n} + X^{2^n-1} + X^{2^n-2} + \cdots + X + 1$. Then for $n = 0, g_0(X) = X^{2^0} + 1 = X + 1$. Thus for n = 0, X + 1 divides $g_n(X)$.

If n > 0, 2^n is an even number and $g_n(X)$ has $2^n + 1$ terms which is an odd number. Then $g_n(1) = 1$ because the sum of an odd number of 1's is 1. But if X + 1 divides $g_n(X)$, then

$$g_n(X) = (X+1)a(X)$$

where a(X) is the quotient polynomial obtained by dividing $g_n(X)$ by X + 1. Now if we substitute X = 1 on both sides we get $g_n(1) = 0$ which is a contradiction for n > 0.