Indian Institute of Technology Bombay
 Department of Electrical Engineering

Please READ THE QUESTIONS CAREFULLY before answering.

1. A polynomial of degree k is said to be primitive if the smallest value of m for which it divides $X^{m}+1$ is $2^{k}-1$.
(a) Show that $X^{3}+X+1$ is a primitive polynomial.

Ans.

$X^{3}+X+1$ is a polynomial of degree 3 . For it to be a primitive polynomial, the smallest value of m for which it divides $X^{m}+1$ is $2^{3}-1=7$. So it should divide $X^{7}+1$ but not $X^{6}+1, X^{5}+1, X^{4}+1, X^{3}+1, X^{2}+1, X+1$ and 1 . [You should do the divisions to check this is the case].
(b) Show that $X^{3}+1$ is not a primitive polynomial.

Ans.
$X^{3}+1$ is a polynomial of degree 3 . For it to be a primitive polynomial, the smallest value of m for which it divides $X^{m}+1$ is $2^{3}-1=7$. So it should divide $X^{7}+1$ but not $X^{6}+1, X^{5}+1, X^{4}+1, X^{3}+1, X^{2}+1, X+1$ and 1 . But it divides itself. Hence it is not a primitive polynomial.
2. Does $X+1$ divide $X^{2^{n}}+X^{2^{n}-1}+X^{2^{n}-2}+\cdots+X+1$ where n is a non-negative integer?

Ans.

If n is a non-negative integer, $n \geq 0$, i.e. $n \in\{0,1,2,3, \ldots\}$. Let $g_{n}(X)=X^{2^{n}}+$ $X^{2^{n}-1}+X^{2^{n}-2}+\cdots+X+1$. Then for $n=0, g_{0}(X)=X^{2^{0}}+1=X+1$. Thus for $n=0, X+1$ divides $g_{n}(X)$.
If $n>0,2^{n}$ is an even number and $g_{n}(X)$ has $2^{n}+1$ terms which is an odd number. Then $g_{n}(1)=1$ because the sum of an odd number of 1 's is 1 . But if $X+1$ divides $g_{n}(X)$, then

$$
g_{n}(X)=(X+1) a(X)
$$

where $a(X)$ is the quotient polynomial obtained by dividing $g_{n}(X)$ by $X+1$. Now if we substitute $X=1$ on both sides we get $g_{n}(1)=0$ which is a contradiction for $n>0$.

