Indian Institute of Technology Bombay
 Department of Electrical Engineering

1. $\{A(t) \mid t \geq 0\}$ is a Poisson process with rate λ. So the number of arrivals in any interval of length τ is Poisson distributed with parameter $\lambda \tau$,

$$
\operatorname{Pr}\{A(t+\tau)-A(t)=n\}=e^{-\lambda \tau} \frac{(\lambda \tau)^{n}}{n!}, \quad n=0,1,2, \ldots
$$

(a) If $\lambda=1$ arrival per second, what is the the probability of zero arrivals from time $t=5 \mathrm{~s}$ to $t=10 \mathrm{~s}$?
[1 point]
Ans.
Setting $t=5$ and $\tau=5$, we get

$$
\operatorname{Pr}\{A(10)-A(5)=0\}=e^{-5} \frac{(5)^{0}}{0!}=e^{-5}
$$

(b) If $\lambda=1$ arrival per second, what is the the probability of zero arrivals from time $t=5$ s to $t=10$ s given that there was one arrival in the interval of time $[0,5) ?$ [1 point]

Ans.

For a Poisson process, the number of arrivals in disjoint intervals are independent random variables. If E_{0} is the event of zero arrivals in the interval $[5,10]$ and E_{1} is the event that one arrival occurs in the interval $[0,5)$, then $\operatorname{Pr}\left\{E_{0} \mid E_{1}\right\}=$ $\operatorname{Pr}\left\{E_{0}\right\}=e^{-5}$ from part (i).
2. The interarrival times of a Poisson process are independent and exponentially distributed. So if τ_{n} is the time between the arrivals of the nth and $(n-1)$ th customers, we have

$$
\operatorname{Pr}\left[\tau_{n} \leq s\right]=1-e^{-\lambda s}, \text { for } s \geq 0
$$

(a) If $\lambda=1$ arrival per second, what is the the probability that the fourth customer will arrive at least 5 seconds after the third customer arrived?
[1 point]
Ans.
Let t_{n} be the arrival time of the nth customer, then

$$
\operatorname{Pr}\left\{t_{4} \geq t_{3}+5\right\}=\operatorname{Pr}\left\{t_{4}-t_{3} \geq 5\right\}=\operatorname{Pr}\left\{\tau_{4} \geq 5\right\}=e^{-5}
$$

(b) If $\lambda=1$ arrival per second, what is the the probability that the fourth customer will arrive at least 5 seconds after the third customer and the fifth customer will arrive at most 10 seconds after the fourth customer?
[1 point]
Ans.
Since the interarrival times are independent, we have

$$
\operatorname{Pr}\left\{\left(\tau_{4} \geq 5\right) \cap\left(\tau_{5} \leq 10\right)\right\}=\operatorname{Pr}\left\{\tau_{4} \geq 5\right\} \operatorname{Pr}\left\{\tau_{5} \leq 10\right\}=e^{-5}\left(1-e^{-10}\right)
$$

3. Suppose a queueing system has no customers in it at time $t=0$. If customer arrivals occur at times $t=1,3,4$ and customer departures occur at times $t=2,5,6$, plot $\alpha(t)=$ The number of arrivals in the system upto time $t, \beta(t)=$ The number of departures in the system upto time t and $N(t)=$ The number of customers in the system at time t.
[6 points]

Ans.

