Indian Institute of Technology Bombay Department of Electrical Engineering

Handout 15	EE 706 Communication Networks
Quiz 6 : 10 points	March 4, 2010

Please READ THE QUESTIONS CAREFULLY before answering.

1. $\{A(t)|t \ge 0\}$ is a *Poisson process* with rate λ . So the number of arrivals in any interval of length τ is Poisson distributed with parameter $\lambda \tau$,

$$\Pr \{A(t+\tau) - A(t) = n\} = e^{-\lambda \tau} \frac{(\lambda \tau)^n}{n!}, \quad n = 0, 1, 2, \dots$$

- (a) If $\lambda = 1$ arrival per second, what is the probability of zero arrivals from time t = 5s to t = 10s? [1 point]
- (b) If $\lambda = 1$ arrival per second, what is the probability of zero arrivals from time t = 5s to t = 10s given that there was one arrival in the interval of time [0, 5)? [1 point]
- 2. The interarrival times of a Poisson process are independent and exponentially distributed. So if τ_n is the time between the arrivals of the *n*th and (n-1)th customers, we have

$$\Pr[\tau_n \le s] = 1 - e^{-\lambda s}, \text{ for } s \ge 0.$$

- (a) If $\lambda = 1$ arrival per second, what is the probability that the fourth customer will arrive at least 5 seconds after the third customer arrived? [1 point]
- (b) If $\lambda = 1$ arrival per second, what is the probability that the fourth customer will arrive at least 5 seconds after the third customer and the fifth customer will arrive at most 10 seconds after the fourth customer? [1 point]
- 3. Suppose a queueing system has no customers in it at time t = 0. If customer arrivals occur at times t = 1, 3, 4 and customer departures occur at times t = 2, 5, 6, plot $\alpha(t)$ = The number of arrivals in the system upto time t, $\beta(t)$ = The number of departures in the system upto time t and N(t) = The number of customers in the system at time t. [6 points]