1. Let $G=\left\{e, \sigma, \sigma^{2}, \tau, \sigma \tau, \sigma^{2} \tau\right\}$ be a group with multiplication as the operation performed using the rules

$$
\sigma^{3}=e, \quad \tau^{2}=e, \quad \tau \sigma=\sigma^{2} \tau
$$

where e is the identity of the group G.
(a) (1 point) Simplify $\tau \sigma^{2}$ to one of the six elements in G.
(b) (1 point) Simplify $\tau(\sigma \tau)$ to one of the six elements in G.
(c) (1 point) Simplify $(\sigma \tau)(\sigma \tau)$ to one of the six elements in G.
(d) (1 point) Simplify $(\sigma \tau)\left(\sigma^{2} \tau\right)$ to one of the six elements in G.
(e) (1 point) Give an example to show that G is not an abelian group.
2. (a) $\left(2^{1} / 2\right.$ points) Prove that every subgroup of a cyclic group is cyclic.
(b) $\left(2 \frac{1}{2}\right.$ points) Prove that a cyclic group of order n has $\phi(n)$ generators.

Note: $\phi(1)=1$. For $n>1$, the value of $\phi(n)$ is the number of integers in $\{1,2, \ldots, n-$ $1\}$ which are relatively prime to n, i.e. which satisfy $\operatorname{gcd}(i, n)=1$.
3. Let G and H be groups. A function $\phi: G \mapsto H$ is called a group homomorphism if it satisfies

$$
\phi\left(g_{1} \star g_{2}\right)=\phi\left(g_{1}\right) \circ \phi\left(g_{2}\right), \text { for all } g_{1}, g_{2} \in G .
$$

Here \star is the group operation in G and \circ is the group operation in H.
(a) ($21 / 2$ points) Let e_{G} be the identity of G and let e_{H} be the identity of H. Prove that $\phi\left(e_{G}\right)=e_{H}$.
(b) $\left(2 \frac{1}{2}\right.$ points) For all $g \in G$, prove that $\phi\left(g^{-1}\right)=[\phi(g)]^{-1}$.
4. (5 points) Let $m_{1}, m_{2}, \ldots, m_{k}$ be positive integers greater than 1 and let $m=m_{1} m_{2} \cdots m_{k}$ be their product. Assume that $m_{1}, m_{2}, \ldots, m_{k}$ are pairwise relatively prime, i.e. $\operatorname{gcd}\left(m_{i}, m_{j}\right)=$ 1 for $i \neq j$. Prove that the function $f: \mathbb{Z}_{m} \mapsto \mathbb{Z}_{m_{1}} \times \mathbb{Z}_{m_{2}} \times \cdots \times \mathbb{Z}_{m_{k}}$ given by

$$
f(a)=\left(a \bmod m_{1}, a \bmod m_{2}, \ldots, a \bmod m_{k}\right)
$$

is a one-to-one function. That is, for all $a_{1}, a_{2} \in \mathbb{Z}_{m}$ with $a_{1} \neq a_{2}$ you have to show that $f\left(a_{1}\right) \neq f\left(a_{2}\right)$.

