Quiz 2:20 points

1. Let $G = \{e, \sigma, \sigma^2, \tau, \sigma\tau, \sigma^2\tau\}$ be a group with multiplication as the operation performed using the rules

$$\sigma^3 = e, \quad \tau^2 = e, \quad \tau\sigma = \sigma^2 \tau,$$

where e is the identity of the group G.

- (a) (1 point) Simplify $\tau \sigma^2$ to one of the six elements in G.
- (b) (1 point) Simplify $\tau(\sigma\tau)$ to one of the six elements in G.
- (c) (1 point) Simplify $(\sigma \tau)(\sigma \tau)$ to one of the six elements in G.
- (d) (1 point) Simplify $(\sigma \tau)(\sigma^2 \tau)$ to one of the six elements in G.
- (e) (1 point) Give an example to show that G is **not** an abelian group.
- 2. (a) $(2\frac{1}{2})$ points) Prove that every subgroup of a cyclic group is cyclic.

(b) (2¹/₂ points) Prove that a cyclic group of order n has $\phi(n)$ generators.

Note: $\phi(1) = 1$. For n > 1, the value of $\phi(n)$ is the number of integers in $\{1, 2, \ldots, n-1\}$ which are relatively prime to n, i.e. which satisfy gcd(i, n) = 1.

3. Let G and H be groups. A function $\phi: G \mapsto H$ is called a **group homomorphism** if it satisfies

$$\phi(g_1 \star g_2) = \phi(g_1) \circ \phi(g_2), \text{ for all } g_1, g_2 \in G.$$

Here \star is the group operation in G and \circ is the group operation in H.

- (a) $(2\frac{1}{2} \text{ points})$ Let e_G be the identity of G and let e_H be the identity of H. Prove that $\phi(e_G) = e_H$.
- (b) (2¹/₂ points) For all $g \in G$, prove that $\phi(g^{-1}) = [\phi(g)]^{-1}$.
- 4. (5 points) Let m_1, m_2, \ldots, m_k be positive integers greater than 1 and let $m = m_1 m_2 \cdots m_k$ be their product. Assume that m_1, m_2, \ldots, m_k are **pairwise** relatively prime, i.e. $gcd(m_i, m_j) =$ 1 for $i \neq j$. Prove that the function $f : \mathbb{Z}_m \mapsto \mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2} \times \cdots \times \mathbb{Z}_{m_k}$ given by

 $f(a) = (a \mod m_1, a \mod m_2, \dots, a \mod m_k)$

is a one-to-one function. That is, for all $a_1, a_2 \in \mathbb{Z}_m$ with $a_1 \neq a_2$ you have to show that $f(a_1) \neq f(a_2)$.