EE 720: An Introduction to Number Theory and Cryptography (Spring 2018)

Lecture 1 — January 5, 2018

Instructor: Saravanan Vijayakumaran Scribe: Saravanan Vijayakumaran

1 Lecture Plan

- Discuss course content, prerequisites, grading scheme, attendance policy.
- Describe the difference between modern and classical cryptography
- Describe the syntax of private-key encryption

2 Course Webpage

https://www.ee.iitb.ac.in/~sarva/courses/EE720/Spring2018.html

3 Syllabus

	Secrecy	Integrity
Private-Key Setting	Private-Key Encryption	MACs
Public-Key Setting	Public-Key Encryption	Digital Signatures

- Perfectly Secret Encryption
- Private-Key Encryption
- Message Authentication Codes
- Practical Stream and Block Ciphers
- Number Theory, Groups, Finite Fields
- Public-Key Encryption
- Hash Functions
- Digital Signatures

4 Reference Books

- Introduction to Modern Cryptography, Jonathan Katz and Yehuda Lindell, CRC Press, 2015 (2nd Edition)
- A Course in Number Theory and Cryptography, Neal Koblitz, Springer, 1994 (2nd Edition)

5 Prerequisites

- Asymptotic Notation (See Appendix A.2 of Katz/Lindell)
- Basic Probability (See Appendix A.3 of Katz/Lindell)
- Python programming

6 Grading Scheme

- 10% Assignments, 20% Quizzes, 25% Midsem, 45% Endsem
- Relative grading
- For AU, final score should be at CC level or above
- 80% attendance required

7 Cryptography

- The dictionary definition of cryptography is "the art of writing or solving codes".
- Modern definition: The study of mathematical techniques for securing digital information, systems, and distributed computations against adversarial attacks.
- Modern approach to cryptography
 - Formal definitions
 - Precise assumptions
 - Proofs of security
- Private-key encryption setting
- Syntax of encryption: Message space \mathcal{M} , Key generation procedure Gen, Encryption procedure Enc, Decryption procedure Dec
 - Gen is a probabilistic algorithm which generate key k
 - Enc takes k and m and gives ciphertext c (probabilistic algorithm)
 - Dec takes c and k and gives m
- Kerckhoffs' principle: Security relies solely on secrecy of key
 - Easier to keep a short key secret than to keep an algorithm secret
 - Easier to change key than encryption scheme
 - Standardization is easier