EE 720: An Introduction to Number Theory and Cryptography (Spring 2018)

Lecture 14 — March 7, 2018

Instructor: Saravanan Vijayakumaran

Scribe: Saravanan Vijayakumaran

1 Lecture Plan

- Prime numbers and divisibility
- Greatest common divisor
- Modular Arithmetic

2 Prime Numbers and Divisibility

Public-key cryptography is based on the hardness of certain number-theoretic problems. For the next few lectures, we will cover some topics in number theory and algebra. We will then see constructions of public-key encryption and authentication systems.

- For $a, b \in \mathbb{Z}$, we say that a divides b (written as $a \mid b$) if there exists an integer c such that b = ac. If a does not divide b, we write $a \not\mid b$.
- Observation: If $a \mid b$ and $a \mid c$, then $a \mid (Xb + Yc)$ for any $X, Y \in \mathbb{Z}$.
- If $a \mid b$ and a is positive, we call a a *divisor* of b. If in addition, $a \notin \{1, b\}$ then a is called a *nontrivial* divisor, or a *factor*, of b.
- A positive integer p > 1 is *prime* if it has no factors, i.e. it has only two divisors: 1 and itself.
- A positive integer greater than 1 that is not prime is called *composite*. By convention, the number 1 is neither prime nor composite.
- Every integer greater than 1 can be expressed *uniquely* (up to ordering) as a product of primes. That is, any positive integer N > 1 can be written as $N = \prod_i p_i^{e_i}$ where p_i 's are distinct primes and the e_i 's are integers such that $e_i \ge 1$ for all i.
- **Proposition:** Let a be an integer and let b be a positive integer. Then there exist unique integers q, r for which a = qb + r and $0 \le r < b$.
- The greatest common divisor of two integers a, b not both zero, written gcd(a, b), is the largest integer c such that $c \mid a$ and $c \mid b$. The value gcd(0, 0) is undefined.
- **Proposition:** Let a, b be positive integers. Then there exist integers X, Y such that Xa + Yb = gcd(a, b). Furthermore, gcd(a, b) is the smallest positive integer that can be expressed this way.

- **Proposition:** Let $c \mid ab$ and gcd(a, c) = 1, then $c \mid b$. Thus, if p is prime and $p \mid ab$ then either $p \mid a$ or $p \mid b$.
- **Proposition:** Let $a \mid N, b \mid N$ and gcd(a, b) = 1, then $ab \mid N$.

3 Modular Arithmetic

- Let $a, b, N \in \mathbb{Z}$ with N > 1. We use the notation $[a \mod N]$ to denote the remainder of a upon division by N.
- We say that a and b are congruent modulo N, written $a = b \mod N$, if $[a \mod N] = [b \mod N]$. Note that $a = b \mod N$ if and only if $N \mid (a - b)$.
- Congruence modulo N obeys the standard rules of arithmetic with respect to addition, subtraction, and multiplication. But not division in general.
- In general, $a = a' \mod N$ and $b = b' \mod N$ does not necessarily mean $a/b = a'/b' \mod N$. For example, $3 \times 2 = 6 = 15 \times 2 \mod 24$. But $3 \neq 2 \mod 24$.
- We can define division if some conditions hold. If for a given integer b there exists an integer c such that $bc = 1 \mod N$, we say b is *invertible* modulo N and call c a *multiplicative inverse* of b modulo N. It is convenient to denote the multiplicative inverse of b by b^{-1} .
- Multiplicative inverses modulo N are unique when they exist.
- Division by b modulo N is only defined when b is invertible modulo N.
- **Proposition:** Let b, N be integers with $b \ge 1$ and $N \ge 1$. Then b is invertible modulo N if and only if gcd(b, N) = 1.

4 References and Additional Reading

• Section 8.1 from Katz/Lindell