EE 720: An Introduction to Number Theory and Cryptography (Spring 2018)

Lecture 15 — March 9, 2018

Instructor: Saravanan Vijayakumaran Scribe: Saravanan Vijayakumaran

1 Lecture Plan

- Groups
- Subgroups

2 Groups

- Let G be a set. A binary operation \circ on G is simply a function with domain $G \times G$.
- For $g, h \in G$, we write $g \circ h$ to represent $\circ(g, h)$.
- A group is a set G along with a binary operation which satisfies:
 - Closure: For all $g, h \in G, g \circ h \in G$.
 - Existence of identity: There exists an identity $e \in G$ such that for all $g \in G$, $e \circ g = g \circ e = g$.
 - Existence of inverses: For all $g \in G$ there exists an element $h \in G$ such that $g \circ h = h \circ g = e$. Such an h is called the inverse of g.
 - Associativity: For all $g_1, g_2, g_3 \in G$, $(g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3)$.
- If G has a finite number of elements, we say G is a finite group and use |G| to denote the *order* of the group (the number of group elements).
- A group is abelian if for all $g, h \in G, g \circ h = h \circ g$.
- The identity in a group G is *unique*.
- Each element g in a group has a *unique* inverse.

3 Subgroups

- If G is a group, a set $H \subseteq G$ is a *subgroup* of G if H itself forms a group under the same operation associated with G.
- Example: Consider the subgroups of $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}.$
- Every group G has the trivial subgroups G and $\{e\}$ where e is the identity of G.

- Notation: It is covenient to use *additive* or *multiplicative* notation to denote the group operation, i.e. g + h or gh instead of $g \circ h$. This does not mean that the group operation is addition or multiplication of numbers.
- In additive notation, the inverse of g is denoted by -g. When we write h g, we mean h + (-g). In multiplicative notation, the inverse of g is denoted by g^{-1} .
- **Proposition:** A nonempty subset H of a group G is called a subgroup of G if
 - (i) $g + h \in H$ for all $g, h \in H$.
 - (ii) $-g \in H$ for all $g \in H$.
- Lagrange's Theorem: If H is a subgroup of a finite group G, then |H| divides |G|.
 - Example: Consider the subgroups of $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$ again.
 - **Definition:** Let H be a subgroup of a group G. For any $g \in G$, the set $H + g = \{h + g \mid h \in H\}$ is called a *right coset* of H.
 - **Example:** $H = \{0,3\}$ is a subgroup of $\mathbb{Z}_6 = \{0,1,2,3,4,5\}$. It has right cosets $H + 0 = \{0,3\}, \quad H + 1 = \{1,4\}, \quad H + 2 = \{2,5\}, \\ H + 3 = \{0,3\}, \quad H + 4 = \{1,4\}, \quad H + 5 = \{2,5\}.$
 - Lemma: Two right cosets of a subgroup are either equal or disjoint.
 - Lemma: If H is a finite subgroup, then all its right cosets have the same cardinality.
 - The proof of Lagrange's theorem follows from these two lemmas.

4 References and Additional Reading

• Section 8.1 from Katz/Lindell