EE 720: An Introduction to Number Theory and Cryptography (Spring 2018)
Lecture 15 - March 9, 2018
Instructor: Saravanan Vijayakumaran
Scribe: Saravanan Vijayakumaran

1 Lecture Plan

- Groups
- Subgroups

2 Groups

- Let G be a set. A binary operation \circ on G is simply a function with domain $G \times G$.
- For $g, h \in G$, we write $g \circ h$ to represent $\circ(g, h)$.
- A group is a set G along with a binary operation which satisfies:
- Closure: For all $g, h \in G, g \circ h \in G$.
- Existence of identity: There exists an identity $e \in G$ such that for all $g \in G, e \circ g=$ $g \circ e=g$.
- Existence of inverses: For all $g \in G$ there exists an element $h \in G$ such that $g \circ h=$ $h \circ g=e$. Such an h is called the inverse of g.
- Associativity: For all $g_{1}, g_{2}, g_{3} \in G,\left(g_{1} \circ g_{2}\right) \circ g_{3}=g_{1} \circ\left(g_{2} \circ g_{3}\right)$.
- If G has a finite number of elements, we say G is a finite group and use $|G|$ to denote the order of the group (the number of group elements).
- A group is abelian if for all $g, h \in G, g \circ h=h \circ g$.
- The identity in a group G is unique.
- Each element g in a group has a unique inverse.

3 Subgroups

- If G is a group, a set $H \subseteq G$ is a subgroup of G if H itself forms a group under the same operation associated with G.
- Example: Consider the subgroups of $\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$.
- Every group G has the trivial subgroups G and $\{e\}$ where e is the identity of G.
- Notation: It is covenient to use additive or multiplicative notation to denote the group operation, i.e. $g+h$ or $g h$ instead of $g \circ h$. This does not mean that the group operation is addition or multiplication of numbers.
- In additive notation, the inverse of g is denoted by $-g$. When we write $h-g$, we mean $h+(-g)$. In multiplicative notation, the inverse of g is denoted by g^{-1}.
- Proposition: A nonempty subset H of a group G is called a subgroup of G if
(i) $g+h \in H$ for all $g, h \in H$.
(ii) $-g \in H$ for all $g \in H$.
- Lagrange's Theorem: If H is a subgroup of a finite group G, then $|H|$ divides $|G|$.
- Example: Consider the subgroups of $\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$ again.
- Definition: Let H be a subgroup of a group G. For any $g \in G$, the set $H+g=$ $\{h+g \mid h \in H\}$ is called a right coset of H.
- Example: $H=\{0,3\}$ is a subgroup of $\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$. It has right cosets

$$
\begin{array}{lll}
H+0=\{0,3\}, & H+1=\{1,4\}, & H+2=\{2,5\} \\
H+3=\{0,3\}, & H+4=\{1,4\}, & H+5=\{2,5\} .
\end{array}
$$

- Lemma: Two right cosets of a subgroup are either equal or disjoint.
- Lemma: If H is a finite subgroup, then all its right cosets have the same cardinality.
- The proof of Lagrange's theorem follows from these two lemmas.

4 References and Additional Reading

- Section 8.1 from Katz/Lindell

