EE 720: An Introduction to Number Theory and Cryptography (Spring 2018)

Lecture 17 — March 16, 2018

Instructor: Saravanan Vijayakumaran Scribe: Saravanan Vijayakumaran

1 Lecture Plan

- Subgroups of Cyclic Groups
- Properties of \mathbb{Z}_N^*

2 Recap of Cyclic Groups

- Definition: A cyclic group is a finite group G such that there exists a $g \in G$ with $\langle g \rangle = G$. We say that g is a generator of G.
- **Proposition:** If G is a group of prime order p, then G is cyclic. Furthermore, all elements of G except the identity are generators of G.
- **Definition:** Groups G and H are isomorphic if there exists a bijection $\phi: G \to H$ such that

$$\phi(\alpha \star \beta) = \phi(\alpha) \otimes \phi(\beta)$$

for all $\alpha, \beta \in G$. Here \star is the binary operation in G and \otimes is the binary operation in H.

- Theorem: Every cyclic group G of order n is isomorphic to \mathbb{Z}_n with addition modulo n as the operation.
- Corollary: Every cyclic group is abelian.

3 Subgroups of Cyclic Groups

- **Theorem:** Every subgroup of a cyclic group is cyclic.
 - Example: $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$ has subgroups $\{0\}, \{0, 3\}, \{0, 2, 4\}, \{0, 1, 2, 3, 4, 5\}$
 - Proof
 - * If h is a generator of a cyclic group G of order n, then

$$G = \{h, h^2, h^3, \dots, h^n = 1\}$$

- * Every element in a subgroup S of G is of the form h^i where $1 \le i \le n$
- * Let h^m be the smallest power of h in S
- * Every element in S is a power of h^m

- **Theorem:** If G is a cyclic group of order n, then G has a unique subgroup of order d for every divisor d of n.
 - Proof
 - * If $G = \langle h \rangle$ and d divides n, then $\langle h^{n/d} \rangle$ has order d
 - * Every subgroup of G is of the form $\langle h^k \rangle$ where k divides n
 - * If k divides $n, \langle h^k \rangle$ has order $\frac{n}{k}$
 - * So if two subgroups have the same order d, then they are both equal to $\langle h^{n/d} \rangle$
- **Definition:** The Euler phi function $\phi(n)$ is defined on the positive integers as follows. We define $\phi(1) = 1$. For n > 1, the value of $\phi(n)$ is the number of integers in $\{1, 2, ..., n 1\}$ which are relatively prime to n, i.e. which satisfy gcd(i, n) = 1.
- **Theorem:** A cyclic group of order *n* has $\phi(n)$ generators.
 - Examples
 - * $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$ has four generators 1, 2, 3, 4
 - * $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$ has two generators 1, 5
 - * $\mathbb{Z}_{10} = \{0, 1, 2, \dots, 9\}$ has four generators 1, 3, 7, 9
 - Proof
 - * Let $G = \langle g \rangle$.
 - * If g^i is also a generator of G, then $(g^i)^n = e$ and $(g^i)^k \neq e$ for all positive integers k < n.
 - * Since $g^n = e$, ik cannot be a multiple of n unless k = n. In other words, lcm(i, n) = in. This implies that gcd(i, n) = 1.
 - * We have shown that G has at least $\phi(n)$ generators.
 - * Can it have more? No. We cannot have g^i as a generator with $gcd(i, n) \neq 1$.
- Theorem: $n = \sum_{d:d|n} \phi(d)$

4 The Group \mathbb{Z}_N^*

- For any integer N > 1, we define $\mathbb{Z}_N^* = \{b \in \{1, 2, \dots, N-1\} \mid \gcd(b, N) = 1\}.$
- Theorem: For N > 1, \mathbb{Z}_N^* is a group under multiplication modulo N.

5 References and Additional Reading

- Section 8.3 from Katz/Lindell
- Section 7.3 of lecture notes of MIT's Principles of Digital Communication II, Spring 2005. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-451-principlesreadings-and-lecture-notes/MIT6_451S05_FullLecNotes.pdf
- Section 2.4 of Topics in Algebra, I. N. Herstein, 2nd edition
- Section 8.1.4 from Katz/Lindell