EE 720: An Introduction to Number Theory and Cryptography (Spring 2018)
Lecture 18 - March 21, 2018
Instructor: Saravanan Vijayakumaran Scribe: Saravanan Vijayakumaran

1 Lecture Plan

- Properties of \mathbb{Z}_{N}^{*}
- Chinese Remainder Theorem

2 Recap

- Theorem: Every subgroup of a cyclic group is cyclic.
- Theorem: If G is a cyclic group of order n, then G has a unique subgroup of order d for every divisor d of n.
- Definition: The Euler phi function $\phi(n)$ is defined on the positive integers as follows. We define $\phi(1)=1$. For $n>1$, the value of $\phi(n)$ is the number of integers in $\{1,2, \ldots, n-1\}$ which are relatively prime to n, i.e. which $\operatorname{satisfy} \operatorname{gcd}(i, n)=1$.
- Theorem: A cyclic group of order n has $\phi(n)$ generators.
- Theorem: $n=\sum_{d: d \mid n} \phi(d)$

3 The Group \mathbb{Z}_{N}^{*}

- For any integer $N>1$, we define $\mathbb{Z}_{N}^{*}=\{b \in\{1,2, \ldots, N-1\} \mid \operatorname{gcd}(b, N)=1\}$.
- Theorem: For $N>1, \mathbb{Z}_{N}^{*}$ is a group under multiplication modulo N.
- Fermat's little theorem: If p is a prime and a is any integer not divisible by p, then $a^{p-1}=1 \bmod p$.
- Euler's theorem: For any integer $N>1$ and $a \in \mathbb{Z}_{N}^{*}$, we have $a^{\phi(N)}=1 \bmod N$.
- For distinct primes p, q, we have $\phi(p q)=(p-1)(q-1)$.
- Theorem: \mathbb{Z}_{N}^{*} is a cyclic group.

4 Chinese Remainder Theorem

- Definition: Groups G and H are isomorphic if there exists a bijection $\phi: G \rightarrow H$ such that

$$
\phi(\alpha \star \beta)=\phi(\alpha) \otimes \phi(\beta)
$$

for all $\alpha, \beta \in G$. Here \star is the binary operation in G and \otimes is the binary operation in H. If G and H are isomorphic, we write $G \simeq H$.

- Given groups G and H with group operations \star and \otimes respectively, we can define a new group $G \times H$ as follows. The elements of $G \times H$ are ordered pairs (g, h) with $g \in G$ and $h \in H$. The group operation \circ of $G \times H$ is defined as

$$
(g, h) \circ\left(g^{\prime}, h^{\prime}\right)=\left(g \star g^{\prime}, h \otimes h^{\prime}\right) .
$$

- Chinese Remainder Theorem: Let $N=p q$ where p, q are integers greater than 1 which are relatively prime, i.e. $\operatorname{gcd}(p, q)=1$. Then

$$
\mathbb{Z}_{N} \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{q} \text { and } \mathbb{Z}_{N}^{*} \simeq \mathbb{Z}_{p}^{*} \times \mathbb{Z}_{q}^{*}
$$

Moreover, the function $f: \mathbb{Z}_{N} \mapsto \mathbb{Z}_{p} \times \mathbb{Z}_{q}$ defined by

$$
f(x)=(x \bmod p, x \bmod q)
$$

is an isomorphism from \mathbb{Z}_{N} to $\mathbb{Z}_{p} \times \mathbb{Z}_{q}$, and the restriction of f to \mathbb{Z}_{N}^{*} is an isomorphism from \mathbb{Z}_{N}^{*} to $\mathbb{Z}_{p}^{*} \times \mathbb{Z}_{q}^{*}$.

- Example: $\mathbb{Z}_{15}^{*}=\{1,2,4,7,8,11,13,14\}$. This group is isomorphic to $\mathbb{Z}_{3}^{*} \times \mathbb{Z}_{5}^{*}$.
- An extension of the Chinese remainder theorem says that if $p_{1}, p_{2} \ldots, p_{l}$ are pairwise relatively prime (i.e., $\operatorname{gcd}\left(p_{i}, p_{j}\right)=1$ for all $i \neq j$) and $N=\Pi_{i=1}^{l} p_{i}$, then

$$
\mathbb{Z}_{N} \simeq \mathbb{Z}_{p_{1}} \times \mathbb{Z}_{p_{2}} \times \cdots \times \mathbb{Z}_{p_{l}} \text { and } \mathbb{Z}_{N}^{*} \simeq \mathbb{Z}_{p_{1}}^{*} \times \mathbb{Z}_{p_{2}}^{*} \times \cdots \times \mathbb{Z}_{p_{l}}^{*}
$$

- Usage
- Compute $14 \cdot 13 \bmod 15$
- Compute $11^{53} \bmod 15$
- Compute $18^{25} \bmod 35$

5 References and Additional Reading

- Section 8.3 from Katz/Lindell
- Section 7.3 of lecture notes of MIT's Principles of Digital Communication II, Spring 2005. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-451-principles-readings-and-lecture-notes/MIT6_451S05_FullLecNotes.pdf
- Section 2.4 of Topics in Algebra, I. N. Herstein, 2nd edition
- Sections 8.1.4, 8.1.5 from Katz/Lindell

