EE 720: An Introduction to Number Theory and Cryptography (Spring 2018)
Lecture 19 - March 27, 2018
Instructor: Saravanan Vijayakumaran Scribe: Saravanan Vijayakumaran

1 Lecture Plan

- Chinese Remainder Theorem
- Discrete Logarithm Problem
- Diffie-Hellman Protocol

2 Recap

- Chinese Remainder Theorem: Let $N=p q$ where p, q are integers greater than 1 which are relatively prime, i.e. $\operatorname{gcd}(p, q)=1$. Then

$$
\mathbb{Z}_{N} \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{q} \text { and } \mathbb{Z}_{N}^{*} \simeq \mathbb{Z}_{p}^{*} \times \mathbb{Z}_{q}^{*}
$$

Moreover, the function $f: \mathbb{Z}_{N} \mapsto \mathbb{Z}_{p} \times \mathbb{Z}_{q}$ defined by

$$
f(x)=(x \bmod p, x \bmod q)
$$

is an isomorphism from \mathbb{Z}_{N} to $\mathbb{Z}_{p} \times \mathbb{Z}_{q}$, and the restriction of f to \mathbb{Z}_{N}^{*} is an isomorphism from \mathbb{Z}_{N}^{*} to $\mathbb{Z}_{p}^{*} \times \mathbb{Z}_{q}^{*}$.

- Example: $\mathbb{Z}_{15}^{*}=\{1,2,4,7,8,11,13,14\}$. This group is isomorphic to $\mathbb{Z}_{3}^{*} \times \mathbb{Z}_{5}^{*}$.
- An extension of the Chinese remainder theorem says that if $m_{1}, m_{2} \ldots, m_{l}$ are pairwise relatively prime (i.e., $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ for all $i \neq j$) and $N=\prod_{i=1}^{l} m_{i}$, then

$$
\mathbb{Z}_{N} \simeq \mathbb{Z}_{m_{1}} \times \mathbb{Z}_{m_{2}} \times \cdots \times \mathbb{Z}_{m_{l}} \text { and } \mathbb{Z}_{N}^{*} \simeq \mathbb{Z}_{m_{1}}^{*} \times \mathbb{Z}_{m_{2}}^{*} \times \cdots \times \mathbb{Z}_{m_{l}}^{*}
$$

- Usage
- Compute $14 \cdot 13 \bmod 15$
- Compute $11^{53} \bmod 15$
- Compute $18^{25} \bmod 35$

3 Chinese Remainder Theorem (continued)

- How to go from $\left(x_{p}, x_{q}\right)=(x \bmod p, x \bmod q)$ to $x \bmod N$ where $\operatorname{gcd}(p, q)=1$?
- Compute X, Y such that $X p+Y q=1$.
- Set $1_{p}:=Y q \bmod N$ and $1_{q}:=X p \bmod N$.
- Compute $x:=x_{p} \cdot 1_{p}+x_{q} \cdot 1_{q} \bmod N$.
- Example: $p=5, q=7$ and $N=35$. What does $(4,3)$ correspond to?
- Let $m_{1}, m_{2}, \ldots, m_{l}$ be pairwise relatively prime positive integers. Then the unique solution modulo $M=m_{1} m_{2} \cdots m_{l}$ of the system of congruences

$$
\begin{aligned}
& x=a_{1} \bmod m_{1} \\
& x=a_{2} \bmod m_{2} \\
& \vdots \\
& x=a_{l} \bmod m_{l}
\end{aligned}
$$

is given by

$$
x=a_{1} M_{1} y_{1}+a_{2} M_{2} y_{2}+\cdots+a_{l} M_{l} y_{l}
$$

where $M_{i}=\frac{M}{m_{i}}$ and $M_{i} y_{i}=1 \bmod m_{i}$.

- Example: Solve for x modulo 105 which satisfied the following congruences.

$$
\begin{aligned}
& x=1 \bmod 3 \\
& x=2 \bmod 5 \\
& x=3 \bmod 7
\end{aligned}
$$

4 Discrete Logarithms in Cyclic Groups

- Definition: If G is a cyclic group of order q with generator g, then for $h \in G$ the unique $x \in \mathbb{Z}_{q}$ which satisfies $g^{x}=h$ is called the discrete logarithm of h with respect to g.
- The discrete logarithm problem is believed to be hard in cyclic groups of prime order. A subgroup of \mathbb{Z}_{p}^{*} having prime order q is a good choice.

5 Diffie-Hellman Protocol

- How do parties which use private-key cryptographic schemes share a secret key in the first place?
- One solution is to have a trusted party act as the key distribution center. But this center is a single point of failure. The DH protocol presents an alternative.

- The Diffie-Hellman key-exchange protocol:

1. Alice runs a group generation algorithm to get (G, q, g) where G is a cyclic group of order q with generator g.
2. Alice chooses a uniform $x \in \mathbb{Z}_{q}$ and computes $h_{A}=g^{x}$.
3. Alice sends $\left(G, q, g, h_{A}\right)$ to Bob.
4. Bob chooses a uniform $y \in \mathbb{Z}_{q}$ and computes $h_{B}=g^{y}$. He sends h_{B} to Alice. He also computes $k_{B}=h_{A}^{y}$.
5. Alice computes $k_{A}=h_{B}^{x}$.

By construction, $k_{A}=k_{B}$.

6 References and Additional Reading

- Sections 8.1.5, 8.3.2 from Katz/Lindell
- Sections 10.1,10.2,10.3 from Katz/Lindell

