EE 720: An Introduction to Number Theory and Cryptography (Spring 2018)

Lecture 21 — April 6, 2018

Instructor: Saravanan Vijayakumaran Scribe: Saravanan Vijayakumaran

1 Lecture Plan

- El Gamal Encryption
- RSA Encryption

2 Recap

Definition. A public-key encryption scheme is a triple of probabilistic polynomial-time algorithms (Gen, Enc, Dec) such that:

- 1. The key-generation algorithm takes 1^n as input and outputs a pair of keys (pk, sk). The first key is called the **public key** and the second key is called the **secret key** or **private key**.
- 2. The encryption algorithm Enc generates the ciphertext $c \leftarrow Enc_{pk}(m)$
- 3. For ciphertext c, the decryption algorithm uses the private key sk to output a message $m = Dec_{sk}(c)$ or error indicator \perp .
- Consider the following experiment $\operatorname{PubK}_{\mathcal{A},\Pi}^{\operatorname{eav}}(n)$:
 - 1. $Gen(1^n)$ is run to obtain keys (pk, sk).
 - 2. The adversary \mathcal{A} is given pk and outputs a pair of arbitrary messages $m_0, m_1 \in \mathcal{M}$ with $|m_0| = |m_1|$.
 - 3. A uniform bit $b \in \{0, 1\}$ is chosen. Ciphertext $c \leftarrow \text{Enc}_{pk}(m_b)$ is computed and given to \mathcal{A} . This ciphertext c is called the *challenge ciphertext*.
 - 4. \mathcal{A} outputs a bit b'.
 - 5. The output of the experiment is defined to be 1 if b' = b, and 0 otherwise. We write $\text{PubK}_{\mathcal{A},\Pi}^{\text{eav}}(n) = 1$ if the output of the experiment is 1 and in this case we say that \mathcal{A} succeeds.

Definition. A public-key encryption scheme $\Pi = (Gen, Enc, Dec)$ has indistinguishable encryptions in the presence of an eavesdropper if for all probabilistic polynomial-time adversaries \mathcal{A} there is a negligible function negl such that, for all n,

$$\Pr\left[\textit{PubK}_{\mathcal{A},\Pi}^{\textit{eav}}(n) = 1\right] \leq \frac{1}{2} + \textit{negl}(n).$$

Proposition. If a public-key encryption scheme has indistinguishable encryptions in the presence of an eavesdropper, it is CPA-secure.

3 El Gamal Encryption

Define a public-key encryption scheme as follows:

- Gen: On input 1^n run $\mathcal{G}(1^n)$ to obtain (G, q, g). Then choose a uniform $x \in \mathbb{Z}_q$ and compute $h = g^x$. The public key is $\langle G, q, g, h \rangle$ and the private key is $\langle G, q, g, x \rangle$. The message space is G.
- Enc: On input a public key $pk = \langle G, q, g, h \rangle$ and message $m \in G$, choose a uniform $y \in \mathbb{Z}_q$ and output the ciphertext $\langle g^y, h^y \cdot m \rangle$.
- Dec: On input a private key $sk = \langle G, q, g, x \rangle$ and ciphertext $\langle c_1, c_2 \rangle$, output $\hat{m} = c_2/c_1^x$.

Theorem. If the DDH problem is hard relative to \mathcal{G} , then the El Gamal encryption scheme is CPA-secure.

4 RSA Encryption

- Given a composite integer N, the factoring problem is to find integers p, q > 1 such that pq = N.
- One can find factors of N by *trial division*, i.e. exhaustively checking if p divides N for $p = 2, 3, \ldots, \lfloor \sqrt{N} \rfloor$. But trial division has running time $\mathcal{O}\left(\sqrt{N} \cdot \operatorname{polylog}(N)\right) = \mathcal{O}\left(2^{\|N\|/2} \cdot \|N\|^c\right)$ which is exponential in the input length $\|N\|$.

4.1 The Factoring Assumption

- Let GenModulus be a polynomial-time algorithm that, on input 1^n , outputs (N, p, q) where N = pq, and p and q are *n*-bit primes except with probability negligible in n.
- The factoring experiment $Factor_{\mathcal{A},GenModulus}(n)$:
 - 1. Run GenModulus (1^n) to obtain (N, p, q).
 - 2. \mathcal{A} is given N, and outputs p', q' > 1.
 - 3. The output of the experiment is 1 if N = p'q', and 0 otherwise.
- Definition: Factoring is hard relative to GenModulus if for all PPT algorithms \mathcal{A} there exists a negligible function negl such that $\Pr[\texttt{Factor}_{\mathcal{A},\texttt{GenModulus}}(n) = 1] \leq \texttt{negl}(n)$.
- The **factoring assumption** states that there exists a **GenModulus** relative to which factoring is hard.

4.2 Plain RSA

• Let GenRSA be a PPT algorithm that on input 1^n , outputs a modulus N that is the product of two *n*-bit primes, along with integers e, d > 1 satisfying $ed = 1 \mod \phi(N)$.

- If we chose e > 1 such that $gcd(e, \phi(N)) = 1$, then the multiplicative inverse d of e in \mathbb{Z}_N^* will satisfy the required conditions.
- Define a public-key encryption scheme as follows:
 - Gen: On input 1^n run GenRSA (1^n) to obtain N, e, and d. The public key is $\langle N, e \rangle$ and the private key is $\langle N, d \rangle$.
 - Enc: On input a public key $pk = \langle N, e \rangle$ and message $m \in \mathbb{Z}_N^*$, compute the ciphertext $c = m^e \mod N$.
 - Dec: On input a private key $sk = \langle N, d \rangle$ and ciphertext $c \in \mathbb{Z}_N^*$, output $\hat{m} = c^d \mod N$.

5 References and Additional Reading

- Sections 11.1,11.2.1 from Katz/Lindell
- Sections 11.4.1,8.2.3,11.5.1 from Katz/Lindell