EE 720: An Introduction to Number Theory and Cryptography (Spring 2018)
Lecture 23 - April 13, 2018
Instructor: Saravanan Vijayakumaran
Scribe: Saravanan Vijayakumaran

1 Lecture Plan

- Miller-Rabin Primality Test

2 Recap

- Fermat's Little Theorem: Let p be a prime. Then for every integer a, we have $a^{p}=$ $a \bmod p$.
- For $a \in\{1,2, \ldots, n-1\}$, if $a \notin \mathbb{Z}_{n}^{*}$ then $a^{n-1} \neq 1 \bmod n$, i.e. such an a is a witness for the compositeness of n.
- But integers in the range $1,2, \ldots, n-1$ not belonging to \mathbb{Z}_{n}^{*} are rare. If n is prime, then there are no such integers as $\mathbb{Z}_{n}^{*}=\{1,2, \ldots, n-1\}$. For composite $n=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}$ where $p_{1}, p_{2}, \ldots, p_{k}$ are distinct primes and $e_{1}, e_{2}, \ldots, e_{k}$ are positive integers, the cardinality of \mathbb{Z}_{n}^{*} is $\phi(n)=p_{1}^{e_{1}-1}\left(p_{1}-1\right) \cdots p_{k}^{e_{k}-1}\left(p_{k}-1\right)$. Then the probability that a random element in $\{1,2, \ldots, n-1\}$ is in \mathbb{Z}_{n}^{*} is given by

$$
\frac{\phi(n)}{n-1} \approx \frac{\phi(n)}{n}=\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{k}}\right) .
$$

If $p_{1}, p_{2}, \ldots, p_{k}$ are large primes, then this fraction is close to 1 . If they are small primes, then it is easy to check that n is composite and fancy primality testing algorithms are not required.

- With this context, let us focus on the integers in \mathbb{Z}_{n}^{*}. For an integer n, we say that the integer $a \in \mathbb{Z}_{n}^{*}$ is a witness for compositeness of n if $a^{n-1} \neq 1 \bmod n$.
- Theorem: If there exists a witness (in \mathbb{Z}_{n}^{*}) that n is composite, then at least half the elements of \mathbb{Z}_{n}^{*} are witnesses that n is composite.
- Suppose there is a composite integer n for which a witness for compositeness exists. Consider the following procedure which fails to detect the compositeness of n with probability at most 2^{-t}.

1. For $i=1,2, \ldots, t$, repeat steps 2 and 3 .
2. Pick a uniformly from $\{1,2, \ldots, n-1\}$.
3. If $a^{n-1} \neq 1 \bmod n$, return "composite".
4. If all the t iterations had $a^{n-1}=1 \bmod n$, return "prime".

- But there exist composite numbers for which $a^{n-1}=1 \bmod n$ for all integers $a \in \mathbb{Z}_{n}^{*}$. These are called Carmichael numbers. The number $561=3 \cdot 11 \cdot 17$ is one such number.

3 Miller-Rabin Primality Test

- Lemma: We say that $x \in \mathbb{Z}_{n}^{*}$ is a square root of $1 \operatorname{modulo} n$ if $x^{2}=1 \bmod n$. If n is an odd prime, then the only square roots of $1 \operatorname{modulo} n$ are $\pm 1 \bmod n \square$
- The Miller-Rabin primality test is based on the above lemma.
- By Fermat's little theorem, if n is an odd prime $a^{n-1}=1 \bmod n$ for all $a \in\{1,2, \ldots, n-1\}$. Suppose $n-1=2^{r} u$ where $r \geq 0$ is an integer and u is an odd integer. Then

$$
a^{u} \bmod n, a^{2 u} \bmod n, a^{2^{2} u} \bmod n, a^{2^{3} u} \bmod n, \ldots, a^{2^{r} u} \bmod n
$$

is a sequence where each element is the square of the previous element. In other words, each element is the square root modulo n of the next element. Since the last element in the sequence is a 1 , by the above lemma the previous elements should feature a -1 somewhere. So one of two things can happen:

- Either $a^{u}=1 \bmod n$. In this case, the whole sequence has only ones.
- Or one of $a^{u} \bmod n, a^{2 u} \bmod n, a^{2^{2} u} \bmod n, a^{2^{3} u} \bmod n, \ldots, a^{2^{2-1} u} \bmod n$ is equal to -1 .
- We say that $a \in \mathbb{Z}_{n}^{*}$ is a strong witness that n is composite if both the above conditions do not hold.
- We say that a integer n is a prime power if $n=p^{r}$ where $r \geq 1$.
- Theorem: Let n be an odd number that is not a prime power. Then at least half the elements of \mathbb{Z}_{n}^{*} are strong witnesses that n is composite.
- See Algorithm 8.44 on page 311 of Katz/Lindell for the steps involved in the Miller-Rabin primality test.

4 References and Additional Reading

- Sections 8.2.1, 8.2.2 from Katz/Lindell

[^0]
[^0]: ${ }^{1}$ Note that $-1 \bmod n=n-1 \in \mathbb{Z}_{n}^{*}$

