Upload the solutions as a pdf file in Moodle. You can upload a scanned version of your handwritten solution. The upload deadline will be 11:00pm IST on Sunday, March 31, 2019.

1. [2 points] Prove that every cyclic group G of order n is isomorphic to \mathbb{Z}_{n} with addition modulo n as the operation.
2. [2 points] Prove that every cyclic group is abelian.
3. [2 points] Using the Chinese remainder theorem, find x modulo 105 which satisfies the following congruences.

$$
\begin{aligned}
& x=1 \bmod 3 \\
& x=2 \bmod 5 \\
& x=3 \bmod 7
\end{aligned}
$$

Note: This can be solved using brute force. But I want you to use the relation $x=a_{1} M_{1} y_{1}+\cdots+a_{l} M_{l} p_{l}$ where $M=p_{1} p_{2} \cdots p_{l}, M_{i}=\frac{M}{p_{i}}$, and $M_{i} y_{i}=1 \bmod p_{i}$. See lecture 18 outline.
4. [2 points] For an integer $e \geq 1$ and prime p, prove that $\phi\left(p^{e}\right)=p^{e}\left(1-\frac{1}{p}\right)$.
5. [2 points] For any integer $n>1$ with prime power factorization $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}$ where $p_{1}, p_{2}, \ldots, p_{k}$ are distinct primes and $e_{1} \geq 1, e_{2} \geq 1, \ldots, e_{k} \geq 1$, prove that

$$
\phi(n)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{k}}\right) .
$$

Hint: Use the Chinese remainder theorem and the result from question 4.

