Quiz 1 : 20 points

- 1. (5 points) Consider the following private-key encryption scheme (Gen, Enc, Dec) where message space \mathcal{M} and ciphertext space \mathcal{C} are both equal to $\{0,1\}^n$. Let the key space \mathcal{K} be the set of all n! permutations of the set $\{1,\ldots,n\}$.
 - Gen: Choose k uniformly from \mathcal{K} . Let $k = (k_1, k_2, \ldots, k_n)$. For example, if n = 4 then k = (2, 1, 3, 4) is the permutation which swaps the positions of the first two elements.
 - Enc: For $m \in \{0,1\}^n$, let m[i] denote the *i*th bit of *m*. Output the ciphertext $c \in \{0,1\}^n$ as

$$c := (m[k_1], m[k_2], \dots, m[k_n]).$$

• Dec: Given $k \in \mathcal{K}$ and ciphertext $c \in \{0, 1\}^n$, output the message m by inverting the permutation.

Prove that this scheme is **not EAV-secure**.

2. (5 points) Let F be a length-preserving pseudorandom function having key length, input length, and output length all equal to n bits. Consider the following keyed function $F' : \{0, 1\}^n \times \{0, 1\}^{n-1} \mapsto \{0, 1\}^{2n}$ defined as

$$F'_k(x) = F_k(0||x)||F_k(x||1).$$

Prove that the F' is **not** a pseudorandom function. Here $F'_k(x) = F'(k, x)$, $F_k(y) = F(k, y)$, and \parallel is the string concatenation operator.

- 3. (5 points) Let F be a length-preserving pseudorandom permutation having key length, input length, and output length all equal to n bits. The CBC mode of encryption on messages of length ln is done as follows:
 - Let $m = (m_1, m_2, \dots, m_l)$ where $m_i \in \{0, 1\}^n$.
 - An initialization vector (IV) of length n bits is first randomly chosen.
 - $c_0 = IV$. For $i = 1, \ldots, l, c_i \coloneqq F_k(c_{i-1} \oplus m_i)$.
 - The ciphertext $c = (c_0, c_1, \ldots, c_l)$ is given as output.

In CBC mode, a new IV is generated randomly every time the encryption function is called. Consider a modification of the CBC mode where the sender and the receiver agree on the following protocol:

- For the first message $m = (m_1, \ldots, m_l)$ of ln bits, the sender generates a random IV and sets $c_0 = IV$. She uses CBC mode to generate ciphertext $c = (c_0, c_1, \ldots, c_l)$.
- The receiver decrypts c using the usual CBC mode decryption.
- For the second message $m' = (m'_1, \ldots, m'_l)$ of ln bits, the sender sets $c'_0 = IV + 1$ where IV was the initialization vector used to encrypt the previous message m. She generates $c'_i = F_k(c'_{i-1} \oplus m'_i)$ for $i = 1, \ldots, l$ and sends $c' = (c'_1, c'_2, \ldots, c'_l)$. Note that c'_0 is not sent. This helps reduce the ciphertext length by n bits.
- The receiver calculates $c'_0 = IV + 1$ and decrypts $(c'_0, c'_1, c'_2, \dots, c'_l)$ using the usual CBC mode decryption.
- For the third message $m'' = (m''_1, \ldots, m''_l)$ of ln bits, the sender sets $c''_0 = IV + 2$, generates $c''_i = F_k(c''_{i-1} \oplus m''_i)$ for $i = 1, \ldots, l$ and sends $c'' = (c''_1, c''_2, \ldots, c''_l)$.
- The receiver calculates $c''_0 = IV + 2$ and decrypts $(c''_0, c''_1, c''_2, \dots, c''_l)$ using the usual CBC mode decryption.
- And so on.

Prove that this modified CBC mode is not CPA-secure.

- 4. (5 points) Let F be a length-preserving pseudorandom function having key length, input length, and output length all equal to n bits. Consider the fixed-length MAC messages of length n bits defined as follows:
 - Mac: on input a key $k \in \{0,1\}^n$ and a message $m \in \{0,1\}^n$, output the tag $t \coloneqq F_k(m)$.
 - Vrfy: on input a key $k \in \{0,1\}^n$ and a message $m \in \{0,1\}^n$, and a tag $t \in \{0,1\}^n$, output a 1 if and only if $t = F_k(m)$. If $t \neq F_k(m)$, output 0.

Prove that the above construction is a secure fixed-length MAC for messages of length n.