EE 720: An Introduction to Number Theory and Cryptography (Spring 2019)
Instructor: Saravanan Vijayakumaran Indian Institute of Technology Bombay
Quiz 2: 20 points

1. Let G be a group whose identity element is e.
(a) (2 points) Prove that if H and K are finite subgroups of G whose orders are relatively prime, then $H \cap K=\{e\}$.
(b) (2 points) Let $g \in G$ be an element of order $k \geq 1$. If $g^{n}=e$ for some positive integer n, prove that k divides n.
2. (a) (2 points) Find the last two digits of the number 123^{403}.
(b) (2 points) Suppose an RSA public key is $(N, e)=(55,27)$. If the ciphertext is $c=4$, find the corresponding plaintext m in \mathbb{Z}_{N}^{*}.
3. (4 points) Find all solutions of the following equation in \mathbb{Z}_{77}.

$$
x^{2}+3 x+4=0 \bmod 77 .
$$

4. Let $N=p q$ where p, q are distinct n-bit odd primes.
(a) (2 points) Prove that $\operatorname{gcd}(N, \phi(N))=1$.

Hint: Since p, q are n-bit odd primes, their binary representations are of the form $p=1\left\|p^{\prime}\right\| 1$ and $q=1\left\|q^{\prime}\right\| 1$ where $p^{\prime}, q^{\prime} \in\{0,1\}^{n-2}$. The $\|$ represents the concatenation operator.
(b) (1 point) Prove that the order of $N+1$ in $\mathbb{Z}_{N^{2}}^{*}$ is N.
(c) (1 point) Consider the map f with domain $\mathbb{Z}_{N} \times \mathbb{Z}_{N}^{*}$ given by

$$
f(a, b)=\left[(N+1)^{a} \cdot b^{N}\right] \bmod N^{2} .
$$

Prove that the range of f is $\mathbb{Z}_{N^{2}}^{*}$.
(d) (4 points) Prove that the map f defined above is a bijection from $\mathbb{Z}_{N} \times \mathbb{Z}_{N}^{*}$ to $\mathbb{Z}_{N^{2}}^{*}$.

