Quiz 2:20 points

- 1. Let G be a group whose identity element is e.
 - (a) (2 points) Prove that if H and K are finite subgroups of G whose orders are relatively prime, then $H \cap K = \{e\}$.
 - (b) (2 points) Let $g \in G$ be an element of order $k \ge 1$. If $g^n = e$ for some positive integer n, prove that k divides n.
- 2. (a) (2 points) Find the last two digits of the number 123^{403} .
 - (b) (2 points) Suppose an RSA public key is (N, e) = (55, 27). If the ciphertext is c = 4, find the corresponding plaintext m in \mathbb{Z}_N^* .
- 3. (4 points) Find all solutions of the following equation in \mathbb{Z}_{77} .

$$x^2 + 3x + 4 = 0 \mod 77.$$

- 4. Let N = pq where p, q are distinct *n*-bit odd primes.
 - (a) (2 points) Prove that gcd(N, φ(N)) = 1.
 Hint: Since p,q are n-bit odd primes, their binary representations are of the form p = 1||p'||1 and q = 1||q'||1 where p', q' ∈ {0,1}ⁿ⁻². The || represents the concatenation operator.
 - (b) (1 point) Prove that the order of N + 1 in $\mathbb{Z}_{N^2}^*$ is N.
 - (c) (1 point) Consider the map f with domain $\mathbb{Z}_N \times \mathbb{Z}_N^*$ given by

$$f(a,b) = \left[(N+1)^a \cdot b^N \right] \mod N^2.$$

Prove that the range of f is $\mathbb{Z}_{N^2}^*$.

(d) (4 points) Prove that the map f defined above is a bijection from $\mathbb{Z}_N \times \mathbb{Z}_N^*$ to $\mathbb{Z}_{N^2}^*$.