Quiz 3 : 20 points

1. (5 points) An element $x \in \mathbb{Z}_N^*$ which satisfies $x^{N-1} \neq 1 \mod N$ is said to be a *witness* that N is composite.

For a given N, suppose there exists a witness that N is composite. Prove that at least half the elements of \mathbb{Z}_N^* are witnesses that N is composite.

Note: You can use the following result without giving a proof.

Let G be a finite group and $H \subseteq G$. If H is nonempty and for all $a, b \in H$ we have $ab \in H$, then H is a subgroup of G.

- 2. (5 points) For an odd integer N, let $N 1 = 2^r u$ where u is odd and $r \ge 1$. An integer $x \in \mathbb{Z}_N^*$ is said to be a *strong witness* that N is composite if
 - (i) $x^u \neq \pm 1 \mod N$ and
 - (ii) $x^{2^{i_u}} \neq -1 \mod N$ for all $i \in \{1, 2, \dots, r-1\}$.

If $x \in \mathbb{Z}_N^*$ is a witness, prove that it is also a strong witness. The definition of a witness is given in question 1.

3. (5 points) Suppose the GenRSA algorithm is used to generate two encryption-decryption exponent pairs (e_1, d_1) and (e_2, d_2) for the same modulus N, where we have $e_1 \neq e_2$ and $gcd(e_1, e_2) = 1$. Also, suppose the same message $m \in \mathbb{Z}_N^*$ is encrypted via plain RSA using both the exponents to get ciphertexts c_1, c_2 given by

$$c_1 = m^{e_1} \mod N,$$

$$c_2 = m^{e_2} \mod N.$$

Show how a PPT adversary can recover m from c_1, c_2 using the public information N, e_1, e_2 .

- 4. Alice is using the plain RSA signature scheme with public key $\langle 143, 7 \rangle$.
 - (a) (2 points) What is Alice's private key?
 - (b) (3 points) What is the plain RSA signature corresponding to the message m = 2? Reduce your answer to an integer in the set $\{0, 1, \ldots, 142\}$.