1. (5 points) An element $x \in \mathbb{Z}_{N}^{*}$ which satisfies $x^{N-1} \neq 1 \bmod N$ is said to be a witness that N is composite.

For a given N, suppose there exists a witness that N is composite. Prove that at least half the elements of \mathbb{Z}_{N}^{*} are witnesses that N is composite.
Note: You can use the following result without giving a proof.
Let G be a finite group and $H \subseteq G$. If H is nonempty and for all $a, b \in H$ we have $a b \in H$, then H is a subgroup of G.
2. (5 points) For an odd integer N, let $N-1=2^{r} u$ where u is odd and $r \geq 1$. An integer $x \in \mathbb{Z}_{N}^{*}$ is said to be a strong witness that N is composite if
(i) $x^{u} \neq \pm 1 \bmod N$ and
(ii) $x^{2^{i} u} \neq-1 \bmod N$ for all $i \in\{1,2, \ldots, r-1\}$.

If $x \in \mathbb{Z}_{N}^{*}$ is a witness, prove that it is also a strong witness. The definition of a witness is given in question 1.
3. (5 points) Suppose the GenRSA algorithm is used to generate two encryption-decryption exponent pairs $\left(e_{1}, d_{1}\right)$ and $\left(e_{2}, d_{2}\right)$ for the same modulus N, where we have $e_{1} \neq e_{2}$ and $\operatorname{gcd}\left(e_{1}, e_{2}\right)=1$. Also, suppose the same message $m \in \mathbb{Z}_{N}^{*}$ is encrypted via plain RSA using both the exponents to get ciphertexts c_{1}, c_{2} given by

$$
\begin{aligned}
& c_{1}=m^{e_{1}} \bmod N, \\
& c_{2}=m^{e_{2}} \bmod N .
\end{aligned}
$$

Show how a PPT adversary can recover m from c_{1}, c_{2} using the public information N, e_{1}, e_{2}.
4. Alice is using the plain RSA signature scheme with public key $\langle 143,7\rangle$.
(a) (2 points) What is Alice's private key?
(b) (3 points) What is the plain RSA signature corresponding to the message $m=$ 2? Reduce your answer to an integer in the set $\{0,1, \ldots, 142\}$.

