EE 720: An Introduction to Number Theory and Cryptography (Spring 2019)

Lecture 6 — January 21, 2019

Instructor: Saravanan Vijayakumaran Scribe: Saravanan Vijayakumaran

1 Lecture Plan

- Discuss pseudorandom generators some more
- Construct a fixed-length private-key encryption scheme that has indistinguishable encryptions in the presence of an eavesdropper.
- Prove the security of the above scheme assuming the existence of a pseudorandom generator.

2 Recap

- Recall the indistinguishability in the presence of an eavesdropper experiment
- Recall the definition of EAV-security
- Recall the definition of pseudorandom generators

3 Pseudorandom Generators

- Example of a non-pseudorandom generator: Define $G : \{0,1\}^n \to \{0,1\}^{n+1}$ as $G(s) = s \parallel (\bigoplus_{i=1}^n s_i).$
- What happens if remove the restriction that *D* is polynomial time?
- Exercise: Let $G : \{0,1\}^n \to \{0,1\}^{l(n)}$ be a pseudorandom generator with expansion factor l(n) > n. Assume that G is defined for all n > 1. Prove or disprove that the following functions are pseudorandom generators where $s \in \{0,1\}^n$, $n \ge 2$, and s_i is the *i*th bit of s.

$$- G_1(s) = G(s) || 0.$$

- $G_2(s) = G(s_1, s_2, \dots, s_{|s|-1}) || s_{|s|}.$
- $G_3(s) = G(s||0).$

• There is no known way to prove the unconditional existence of pseudorandom generators. We will see some constructions of stream ciphers which we hope are pseudorandom generators.

4 A Secure Fixed-Length Encryption Scheme

- Let G be a pseudorandom generator with expansion factor l. Define a private-key encryption scheme for messages of length l as follows:
 - Gen: On input 1^n , choose k uniformly from $\{0,1\}^n$.
 - Enc: Given $k \in \{0,1\}^n$ and message $m \in \{0,1\}^{l(n)}$, output the ciphertext

$$c := G(k) \oplus m.$$

- Dec: Given $k \in \{0,1\}^n$ and ciphertext $c \in \{0,1\}^{l(n)}$, output the message

$$m := G(k) \oplus c.$$

Theorem. If G is a pseudorandom generator, then the above construction is a fixed-length encryption scheme that has indistinguishable encryptions in the presence of an eavesdropper, i.e. for any PPT adversary \mathcal{A} there is a negligible function **negl** such that

$$\Pr\left[\textit{PrivK}_{\mathcal{A},\Pi}^{\textit{eav}}(n) = 1\right] \leq \frac{1}{2} + \textit{negl}(n)$$

Proof. Note that if a one-time pad is used instead of the pseudorandom generator G(k), the system is EAV-secure. The key idea is that if a PPT adversary \mathcal{A} can distinguish between the encryptions of m_0 and m_1 , then it can distinguish between G(k) and a uniformly random bitstring.

Distinguisher D: D is given a string $w \in \{0,1\}^{l(n)}$ (assume n can be determined from l(n))

- 1. Run $\mathcal{A}(1^n)$ to obtain a pair of messages $m_0, m_1 \in \{0, 1\}^{l(n)}$.
- 2. Choose a uniform bit $b \in \{0, 1\}$. Set $c := w \oplus m_b$.
- 3. Give c to A and get b'. If b = b' output 1 and output 0 otherwise.

If \mathcal{A} succeeds, D decides that w is a pseudorandom string and if \mathcal{A} fails D decides w is a random string.

Rest of proof done in class.

5 References and Additional Reading

• Sections 3.2,3.3 from Katz/Lindell