
EE 720: An Introduction to Number Theory and Cryptography (Spring 2019)

Lecture 15 — March 7, 2019

Instructor: Saravanan Vijayakumaran Scribe: Saravanan Vijayakumaran

1 Lecture Plan

• Groups

• Subgroups

2 Groups

• Let G be a set. A binary operation ◦ on G is simply a function with domain G×G.

• For g, h ∈ G, we write g ◦ h to represent ◦(g, h).

• A group is a set G along with a binary operation which satisfies:

– Closure: For all g, h ∈ G, g ◦ h ∈ G.

– Existence of identity: There exists an identity e ∈ G such that for all g ∈ G, e ◦ g =
g ◦ e = g.

– Existence of inverses: For all g ∈ G there exists an element h ∈ G such that g ◦ h =
h ◦ g = e. Such an h is called the inverse of g.

– Associativity: For all g1, g2, g3 ∈ G, (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3).

• Examples: R with + and R \ {0} with × as operations. Note that R is not a group with
subtraction as the operation.

• When the binary operation is understood, we simply call the set G a group.

• If G has a finite number of elements, we say G is a finite group and use |G| to denote the
order of the group (the number of group elements).

– Example: Zn = {0, 1, 2, . . . , n− 1} under modulo n addition.

– Corollary: There exists a group of every finite order n ≥ 1.

• In general, instead of an operator like ◦ we will use additive or multiplicative notation.

– In additive notation, the group operation between elements g, h is denoted g + h. The
inverse of g is denoted by −g. We will write h − g to mean h + (−g). The identity of
the group will be denoted by 0.

– In multiplicative notation, the group operation between elements g, h is denoted gh. The
inverse of g is denoted by g−1. The identity of the group will be denoted by 1.
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• The following lemma uses multiplicative notation. But that does not mean it is restricted to
groups involving numbers. The lemma states that the usual “cancellation law” is valid for
any group.

• Lemma 8.13 Let G be a group and a, b, c ∈ G. If ac = bc, then a = b.

• The identity in a group G is unique.

• Each element g in a group has a unique inverse.

• For every g ∈ G,
(
g−1

)−1
= g.

• For every g, h ∈ G, (gh)−1 = h−1g−1.

• A group is abelian if for all g, h ∈ G, gh = hg.

– Example of non-abelian group: The set of one-to-one mappings of {x1, x2, x3} onto itself
under composition operation.

• Cryptography typically involves finite abelian groups.

3 Subgroups

• If G is a group, a nonempty subset H ⊆ G is a subgroup of G if H itself forms a group under
the same operation associated with G.

• Example: Consider the subgroups of Z6 = {0, 1, 2, 3, 4, 5}.

• Every group G has the trivial subgroups G and {e} where e is the identity of G.

• Proposition: A nonempty subset H of a group G is called a subgroup of G if and only if

(i) g + h ∈ H for all g, h ∈ H.

(ii) −g ∈ H for all g ∈ H.

• Lagrange’s Theorem: If H is a subgroup of a finite group G, then |H| divides |G|.

– Example: Consider the subgroups of Z6 = {0, 1, 2, 3, 4, 5} again.

– Definition: Let H be a subgroup of a group G. For any g ∈ G, the set H + g =
{h + g | h ∈ H} is called a right coset of H.

– For abelian groups, there is only a notion of a coset as both right and left cosets are the
same, i.e. H + g = g + H. For non-abelian groups, this is not necessarily true.

– Example: H = {0, 3} is a subgroup of Z6 = {0, 1, 2, 3, 4, 5}. It has right cosets

H + 0 = {0, 3} , H + 1 = {1, 4} , H + 2 = {2, 5} ,
H + 3 = {0, 3} , H + 4 = {1, 4} , H + 5 = {2, 5} .

– Lemma: Two right cosets of a subgroup are either equal or disjoint.

– Lemma: If H is a finite subgroup, then all its right cosets have the same cardinality.

– The proof of Lagrange’s theorem follows from these two lemmas.
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4 References and Additional Reading

• Section 8.1 from Katz/Lindell

• Sections 2.1–2.4 of Topics in Algebra, I. N. Herstein, 2nd edition
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