EE 720: An Introduction to Number Theory and Cryptography (Spring 2019)
Lecture 17 - March 14, 2019
Instructor: Saravanan Vijayakumaran
Scribe: Saravanan Vijayakumaran

1 Lecture Plan

- Some more results on cyclic groups
- Properties of \mathbb{Z}_{N}^{*}
- Chinese Remainder Theorem

2 Recap

- Definition: A cyclic group is a finite group G such that there exists a $g \in G$ with $\langle g\rangle=G$. We say that g is a generator of G.
- Definition: Groups G and H are isomorphic if there exists a bijection $\phi: G \rightarrow H$ such that

$$
\phi(\alpha \star \beta)=\phi(\alpha) \otimes \phi(\beta)
$$

for all $\alpha, \beta \in G$. Here \star is the binary operation in G and \otimes is the binary operation in H.

3 Some Properties of Cyclic Groups

- Theorem: Every cyclic group G of order n is isomorphic to \mathbb{Z}_{n} with addition modulo n as the operation.
- Corollary: Every cyclic group is abelian.
- Definition: The Euler phi function $\phi(n)$ is defined on the positive integers as follows. We define $\phi(1)=1$. For $n>1$, the value of $\phi(n)$ is the number of integers in $\{1,2, \ldots, n-1\}$ which are relatively prime to n, i.e. which satisfy $\operatorname{gcd}(i, n)=1$.
- Theorem: A cyclic group of order n has $\phi(n)$ generators.
- Examples
* $\mathbb{Z}_{5}=\{0,1,2,3,4\}$ has four generators $1,2,3,4$
* $\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$ has two generators 1,5
$* \mathbb{Z}_{10}=\{0,1,2, \ldots, 9\}$ has four generators $1,3,7,9$
- Proof
* Let $G=\langle g\rangle$.
* If g^{i} is also a generator of G, then $\left(g^{i}\right)^{n}=e$ and $\left(g^{i}\right)^{k} \neq e$ for all positive integers $k<n$.
* Since $g^{n}=e, i k$ cannot be a multiple of n unless $k=n$. In other words, $\operatorname{lcm}(i, n)=$ $i n$. This implies that $\operatorname{gcd}(i, n)=1$.

4 The Group \mathbb{Z}_{N}^{*}

- For any integer $N>1$, we define $\mathbb{Z}_{N}^{*}=\{b \in\{1,2, \ldots, N-1\} \mid \operatorname{gcd}(b, N)=1\}$.
- By the definition of the Euler phi function, the cardinality or order of \mathbb{Z}_{N}^{*} is $\phi(N)$.
- Theorem: For $N>1, \mathbb{Z}_{N}^{*}$ is a group under multiplication modulo N.
- Fermat's little theorem: If p is a prime and a is any integer not divisible by p, then $a^{p-1}=1 \bmod p$.
- Euler's theorem: For any integer $N>1$ and $a \in \mathbb{Z}_{N}^{*}$, we have $a^{\phi(N)}=1 \bmod N$.
- For an integer $e \geq 1$ and prime $p, \phi\left(p^{e}\right)=p^{e}\left(1-\frac{1}{p}\right)$.
- For distinct primes p, q, we have $\phi(p q)=(p-1)(q-1)$.
- For positive integers m, n such that $\operatorname{gcd}(m, n)=1$, we have $\phi(m n)=\phi(m) \phi(n)$.
- Proof will follow from the Chinese Remainder Theorem
- Theorem: If N is a prime, \mathbb{Z}_{N}^{*} is a cyclic group.
- Proof does not follow from Lagrange's theorem as $\phi(N)$ is composite.
- Since proof requires results which we have not discussed, we will omit it.

5 Chinese Remainder Theorem

- Definition: Groups G and H are isomorphic if there exists a bijection $\phi: G \rightarrow H$ such that

$$
\phi(\alpha \star \beta)=\phi(\alpha) \otimes \phi(\beta)
$$

for all $\alpha, \beta \in G$. Here \star is the binary operation in G and \otimes is the binary operation in H. If G and H are isomorphic, we write $G \simeq H$.

- Given groups G and H with group operations \star and \otimes respectively, we can define a new group $G \times H$ as follows. The elements of $G \times H$ are ordered pairs (g, h) with $g \in G$ and $h \in H$. The group operation \circ of $G \times H$ is defined as

$$
(g, h) \circ\left(g^{\prime}, h^{\prime}\right)=\left(g \star g^{\prime}, h \otimes h^{\prime}\right) .
$$

- Chinese Remainder Theorem: Let $N=p q$ where p, q are integers greater than 1 which are relatively prime, i.e. $\operatorname{gcd}(p, q)=1$. Then

$$
\mathbb{Z}_{N} \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{q} \text { and } \mathbb{Z}_{N}^{*} \simeq \mathbb{Z}_{p}^{*} \times \mathbb{Z}_{q}^{*}
$$

Moreover, the function $f: \mathbb{Z}_{N} \mapsto \mathbb{Z}_{p} \times \mathbb{Z}_{q}$ defined by

$$
f(x)=(x \bmod p, x \bmod q)
$$

is an isomorphism from \mathbb{Z}_{N} to $\mathbb{Z}_{p} \times \mathbb{Z}_{q}$, and the restriction of f to \mathbb{Z}_{N}^{*} is an isomorphism from \mathbb{Z}_{N}^{*} to $\mathbb{Z}_{p}^{*} \times \mathbb{Z}_{q}^{*}$.

- Example: $\mathbb{Z}_{15}^{*}=\{1,2,4,7,8,11,13,14\}$. This group is isomorphic to $\mathbb{Z}_{3}^{*} \times \mathbb{Z}_{5}^{*}$.
- An extension of the Chinese remainder theorem says that if $p_{1}, p_{2} \ldots, p_{l}$ are pairwise relatively prime (i.e., $\operatorname{gcd}\left(p_{i}, p_{j}\right)=1$ for all $i \neq j$) and $N=\prod_{i=1}^{l} p_{i}$, then

$$
\mathbb{Z}_{N} \simeq \mathbb{Z}_{p_{1}} \times \mathbb{Z}_{p_{2}} \times \cdots \times \mathbb{Z}_{p_{l}} \text { and } \mathbb{Z}_{N}^{*} \simeq \mathbb{Z}_{p_{1}}^{*} \times \mathbb{Z}_{p_{2}}^{*} \times \cdots \times \mathbb{Z}_{p_{l}}^{*}
$$

- Usage
- Compute $14 \cdot 13 \bmod 15$
- Compute $11^{53} \bmod 15$
- Compute $18^{25} \bmod 35$
- How to go from $\left(x_{p}, x_{q}\right)=(x \bmod p, x \bmod q)$ to $x \bmod N$ where $\operatorname{gcd}(p, q)=1$?
- Compute X, Y such that $X p+Y q=1$.
- Set $1_{p}:=Y q \bmod N$ and $1_{q}:=X p \bmod N$.
- Compute $x:=x_{p} \cdot 1_{p}+x_{q} \cdot 1_{q} \bmod N$.
- Example: $p=5, q=7$ and $N=35$. What does $(4,3)$ correspond to?
- Let $m_{1}, m_{2}, \ldots, m_{l}$ be pairwise relatively prime positive integers. Then the unique solution modulo $M=m_{1} m_{2} \cdots m_{l}$ of the system of congruences

$$
\begin{aligned}
& x=a_{1} \bmod m_{1} \\
& x=a_{2} \bmod m_{2} \\
& \vdots \\
& x=a_{l} \bmod m_{l}
\end{aligned}
$$

is given by

$$
x=a_{1} M_{1} y_{1}+a_{2} M_{2} y_{2}+\cdots+a_{l} M_{l} y_{l}
$$

where $M_{i}=\frac{M}{m_{i}}$ and $M_{i} y_{i}=1 \bmod m_{i}$.

- Example: Solve for x modulo 105 which satisfied the following congruences.

$$
\begin{aligned}
& x=1 \bmod 3 \\
& x=2 \bmod 5 \\
& x=3 \bmod 7
\end{aligned}
$$

6 References and Additional Reading

- Section 8.3.1 from Katz/Lindell
- Sections 8.1.4, 8.1.5 from Katz/Lindell

