EE 720: An Introduction to Number Theory and Cryptography (Spring 2019)

Lecture 17 — March 14, 2019

Instructor: Saravanan Vijayakumaran Scribe: Saravanan Vijayakumaran

1 Lecture Plan

e Some more results on cyclic groups
e Properties of Z3;

e Chinese Remainder Theorem

2 Recap

e Definition: A cyclic group is a finite group G such that there exists a ¢ € G with (g) = G.
We say that ¢ is a generator of G.

e Definition: Groups G and H are isomorphic if there exists a bijection ¢ : G — H such that

plax ) = ¢(a) ® ¢(B)

for all a;, B € G. Here % is the binary operation in G and ® is the binary operation in H.

3 Some Properties of Cyclic Groups

e Theorem: Every cyclic group G of order n is isomorphic to Z, with addition modulo n as
the operation.

e Corollary: Every cyclic group is abelian.

e Definition: The Fuler phi function ¢(n) is defined on the positive integers as follows. We
define ¢(1) = 1. For n > 1, the value of ¢(n) is the number of integers in {1,2,...,n — 1}
which are relatively prime to n, i.e. which satisfy ged(i,n) = 1.

e Theorem: A cyclic group of order n has ¢(n) generators.

— Examples

x Zs ={0,1,2,3,4} has four generators 1,2,3,4

x Z¢ ={0,1,2,3,4,5} has two generators 1,5

x Z10 = {0,1,2,...,9} has four generators 1,3,7,9
— Proof

x Let G = (g).



* If g' is also a generator of G, then (¢°)" = e and (gz)k # e for all positive integers
k <n.

* Since g" = e, ik cannot be a multiple of n unless & = n. In other words, lem(i,n) =
in. This implies that ged(i,n) = 1.

4 The Group Zj

e For any integer N > 1, we define Z3, = {b € {1,2,...,N — 1} | ged(b, N) = 1}.
e By the definition of the Euler phi function, the cardinality or order of Z} is ¢(NN).
e Theorem: For N > 1, Z}; is a group under multiplication modulo N.

e Fermat’s little theorem: If p is a prime and « is any integer not divisible by p, then
a?~' =1 mod p.

e Euler’s theorem: For any integer N > 1 and a € Z%,, we have a®™) = 1 mod N.

e For an integer e > 1 and prime p, ¢(p€) = p°© (1 — %)

e For distinct primes p, ¢, we have ¢(pg) = (p — 1)(¢ — 1).

e For positive integers m,n such that ged(m,n) = 1, we have ¢(mn) = ¢(m)p(n).
— Proof will follow from the Chinese Remainder Theorem

e Theorem: If N is a prime, Z} is a cyclic group.

— Proof does not follow from Lagrange’s theorem as ¢(NN) is composite.

— Since proof requires results which we have not discussed, we will omit it.

5 Chinese Remainder Theorem

e Definition: Groups G and H are isomorphic if there exists a bijection ¢ : G — H such that

plax B) = ¢(a) ® ¢(B)

for all a, 8 € GG. Here * is the binary operation in G and ® is the binary operation in H. If
G and H are isomorphic, we write G >~ H.

e Given groups GG and H with group operations x and ® respectively, we can define a new group
G x Has follows. The elements of G x H are ordered pairs (g, h) with g € G and h € H. The
group operation o of G x H is defined as

(g,h) o (g, 1)) = (gx g, h@ ).



Chinese Remainder Theorem: Let N = pq where p, g are integers greater than 1 which
are relatively prime, i.e. ged(p,q) = 1. Then

LN ~ZLp X Ly and Ly =~ 7, X L.
Moreover, the function f : Zy +— Z, x Z4 defined by
f(x) = (z mod p, z mod q)

is an isomorphism from Zy to Z, X Z,, and the restriction of f to Z}; is an isomorphism from
Ly to Zy X ZLy.

Example: Z7; = {1,2,4,7,8,11,13,14}. This group is isomorphic to Z} x Z.

An extension of the Chinese remainder theorem says that if p1,ps ..., p; are pairwise relatively
prime (i.e., ged(p;,p;) = 1 for all i # j) and N = II._, p;, then

~Y DY *N * * DY *
LN =~ Ly, X Lpy X X L, and Ly > Ly, X L, % X L, -

Usage

— Compute 14 - 13 mod 15
— Compute 11°% mod 15
— Compute 18%° mod 35

How to go from (xp,2,) = (x mod p, x mod ¢q) to £ mod N where ged(p, q) = 17

— Compute X,Y such that Xp+4+Yq=1.
— Set 1, := Ygmod N and 1, := Xp mod N.
— Compute z =z, - 1, + x4 - 1, mod N.

Example: p=5,¢ =7 and N = 35. What does (4, 3) correspond to?

Let m1,ma,...,m; be pairwise relatively prime positive integers. Then the unique solution
modulo M = myms - - - my of the system of congruences

T = a1 mod my

T = ag mod mo

z = q; mod my

is given by
r = a1 My + a2 Mays + - - - + a My,

where M; = mMZ and M;y; = 1 mod m;.

Example: Solve for £ modulo 105 which satisfied the following congruences.

z =1 mod 3
T =2mod 5
z =3 mod 7



6 References and Additional Reading

e Section 8.3.1 from Katz/Lindell

e Sections 8.1.4, 8.1.5 from Katz/Lindell
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