
EE 720: An Introduction to Number Theory and Cryptography (Spring 2019)

Lecture 17 — March 14, 2019

Instructor: Saravanan Vijayakumaran Scribe: Saravanan Vijayakumaran

1 Lecture Plan

• Some more results on cyclic groups

• Properties of Z∗N

• Chinese Remainder Theorem

2 Recap

• Definition: A cyclic group is a finite group G such that there exists a g ∈ G with 〈g〉 = G.
We say that g is a generator of G.

• Definition: Groups G and H are isomorphic if there exists a bijection φ : G→ H such that

φ(α ? β) = φ(α)⊗ φ(β)

for all α, β ∈ G. Here ? is the binary operation in G and ⊗ is the binary operation in H.

3 Some Properties of Cyclic Groups

• Theorem: Every cyclic group G of order n is isomorphic to Zn with addition modulo n as
the operation.

• Corollary: Every cyclic group is abelian.

• Definition: The Euler phi function φ(n) is defined on the positive integers as follows. We
define φ(1) = 1. For n > 1, the value of φ(n) is the number of integers in {1, 2, . . . , n − 1}
which are relatively prime to n, i.e. which satisfy gcd(i, n) = 1.

• Theorem: A cyclic group of order n has φ(n) generators.

– Examples

∗ Z5 = {0, 1, 2, 3, 4} has four generators 1, 2, 3, 4

∗ Z6 = {0, 1, 2, 3, 4, 5} has two generators 1, 5

∗ Z10 = {0, 1, 2, . . . , 9} has four generators 1, 3, 7, 9

– Proof

∗ Let G = 〈g〉.
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∗ If gi is also a generator of G, then (gi)n = e and
(
gi
)k 6= e for all positive integers

k < n.

∗ Since gn = e, ik cannot be a multiple of n unless k = n. In other words, lcm(i, n) =
in. This implies that gcd(i, n) = 1.

4 The Group Z∗N

• For any integer N > 1, we define Z∗N = {b ∈ {1, 2, . . . , N − 1} | gcd(b,N) = 1}.

• By the definition of the Euler phi function, the cardinality or order of Z∗N is φ(N).

• Theorem: For N > 1, Z∗N is a group under multiplication modulo N .

• Fermat’s little theorem: If p is a prime and a is any integer not divisible by p, then
ap−1 = 1 mod p.

• Euler’s theorem: For any integer N > 1 and a ∈ Z∗N , we have aφ(N) = 1 mod N .

• For an integer e ≥ 1 and prime p, φ(pe) = pe
(

1− 1
p

)
.

• For distinct primes p, q, we have φ(pq) = (p− 1)(q − 1).

• For positive integers m,n such that gcd(m,n) = 1, we have φ(mn) = φ(m)φ(n).

– Proof will follow from the Chinese Remainder Theorem

• Theorem: If N is a prime, Z∗N is a cyclic group.

– Proof does not follow from Lagrange’s theorem as φ(N) is composite.

– Since proof requires results which we have not discussed, we will omit it.

5 Chinese Remainder Theorem

• Definition: Groups G and H are isomorphic if there exists a bijection φ : G→ H such that

φ(α ? β) = φ(α)⊗ φ(β)

for all α, β ∈ G. Here ? is the binary operation in G and ⊗ is the binary operation in H. If
G and H are isomorphic, we write G ' H.

• Given groups G and H with group operations ? and ⊗ respectively, we can define a new group
G×Has follows. The elements of G×H are ordered pairs (g, h) with g ∈ G and h ∈ H. The
group operation ◦ of G×H is defined as

(g, h) ◦ (g′, h′) = (g ? g′, h⊗ h′).
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• Chinese Remainder Theorem: Let N = pq where p, q are integers greater than 1 which
are relatively prime, i.e. gcd(p, q) = 1. Then

ZN ' Zp × Zq and Z∗N ' Z∗p × Z∗q .

Moreover, the function f : ZN 7→ Zp × Zq defined by

f(x) = (x mod p, x mod q)

is an isomorphism from ZN to Zp×Zq, and the restriction of f to Z∗N is an isomorphism from
Z∗N to Z∗p × Z∗q .

• Example: Z∗15 = {1, 2, 4, 7, 8, 11, 13, 14}. This group is isomorphic to Z∗3 × Z∗5.

• An extension of the Chinese remainder theorem says that if p1, p2 . . . , pl are pairwise relatively
prime (i.e., gcd(pi, pj) = 1 for all i 6= j) and N = Πl

i=1pi, then

ZN ' Zp1 × Zp2 × · · · × Zpl and Z∗N ' Z∗p1 × Z∗p2 × · · · × Z∗pl .

• Usage

– Compute 14 · 13 mod 15

– Compute 1153 mod 15

– Compute 1825 mod 35

• How to go from (xp, xq) = (x mod p, x mod q) to x mod N where gcd(p, q) = 1?

– Compute X,Y such that Xp+ Y q = 1.

– Set 1p := Y q mod N and 1q := Xp mod N .

– Compute x := xp · 1p + xq · 1q mod N .

• Example: p = 5, q = 7 and N = 35. What does (4, 3) correspond to?

• Let m1,m2, . . . ,ml be pairwise relatively prime positive integers. Then the unique solution
modulo M = m1m2 · · ·ml of the system of congruences

x = a1 mod m1

x = a2 mod m2

...

x = al mod ml

is given by
x = a1M1y1 + a2M2y2 + · · ·+ alMlyl

where Mi = M
mi

and Miyi = 1 mod mi.

• Example: Solve for x modulo 105 which satisfied the following congruences.

x = 1 mod 3

x = 2 mod 5

x = 3 mod 7
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6 References and Additional Reading

• Section 8.3.1 from Katz/Lindell

• Sections 8.1.4, 8.1.5 from Katz/Lindell
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