EE 720: An Introduction to Number Theory and Cryptography (Spring 2019)

Lecture 17 — March 14, 2019

Instructor: Saravanan Vijayakumaran Scribe: Saravanan Vijayakumaran

1 Lecture Plan

- Some more results on cyclic groups
- Properties of \mathbb{Z}_N^*
- Chinese Remainder Theorem

2 Recap

- Definition: A cyclic group is a finite group G such that there exists a $g \in G$ with $\langle g \rangle = G$. We say that g is a generator of G.
- **Definition:** Groups G and H are isomorphic if there exists a bijection $\phi: G \to H$ such that

$$\phi(\alpha \star \beta) = \phi(\alpha) \otimes \phi(\beta)$$

for all $\alpha, \beta \in G$. Here \star is the binary operation in G and \otimes is the binary operation in H.

3 Some Properties of Cyclic Groups

- **Theorem:** Every cyclic group G of order n is isomorphic to \mathbb{Z}_n with addition modulo n as the operation.
- Corollary: Every cyclic group is abelian.
- **Definition:** The Euler phi function $\phi(n)$ is defined on the positive integers as follows. We define $\phi(1) = 1$. For n > 1, the value of $\phi(n)$ is the number of integers in $\{1, 2, ..., n 1\}$ which are relatively prime to n, i.e. which satisfy gcd(i, n) = 1.
- **Theorem:** A cyclic group of order n has $\phi(n)$ generators.
 - Examples
 - * $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$ has four generators 1, 2, 3, 4
 - * $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$ has two generators 1, 5
 - * $\mathbb{Z}_{10} = \{0, 1, 2, \dots, 9\}$ has four generators 1, 3, 7, 9
 - Proof
 - * Let $G = \langle g \rangle$.

- * If g^i is also a generator of G, then $(g^i)^n = e$ and $(g^i)^k \neq e$ for all positive integers k < n.
- * Since $g^n = e$, ik cannot be a multiple of n unless k = n. In other words, lcm(i, n) = in. This implies that gcd(i, n) = 1.

4 The Group \mathbb{Z}_N^*

- For any integer N > 1, we define $\mathbb{Z}_N^* = \{b \in \{1, 2, ..., N-1\} \mid \gcd(b, N) = 1\}.$
- By the definition of the Euler phi function, the cardinality or order of \mathbb{Z}_N^* is $\phi(N)$.
- Theorem: For N > 1, \mathbb{Z}_N^* is a group under multiplication modulo N.
- Fermat's little theorem: If p is a prime and a is any integer not divisible by p, then $a^{p-1} = 1 \mod p$.
- Euler's theorem: For any integer N > 1 and $a \in \mathbb{Z}_N^*$, we have $a^{\phi(N)} = 1 \mod N$.
- For an integer $e \ge 1$ and prime $p, \phi(p^e) = p^e \left(1 \frac{1}{p}\right)$.
- For distinct primes p, q, we have $\phi(pq) = (p-1)(q-1)$.
- For positive integers m, n such that gcd(m, n) = 1, we have $\phi(mn) = \phi(m)\phi(n)$.

- Proof will follow from the Chinese Remainder Theorem

- **Theorem:** If N is a prime, \mathbb{Z}_N^* is a cyclic group.
 - Proof does not follow from Lagrange's theorem as $\phi(N)$ is composite.
 - Since proof requires results which we have not discussed, we will omit it.

5 Chinese Remainder Theorem

• **Definition:** Groups G and H are isomorphic if there exists a bijection $\phi: G \to H$ such that

$$\phi(\alpha \star \beta) = \phi(\alpha) \otimes \phi(\beta)$$

for all $\alpha, \beta \in G$. Here \star is the binary operation in G and \otimes is the binary operation in H. If G and H are isomorphic, we write $G \simeq H$.

• Given groups G and H with group operations \star and \otimes respectively, we can define a new group $G \times H$ as follows. The elements of $G \times H$ are ordered pairs (g, h) with $g \in G$ and $h \in H$. The group operation \circ of $G \times H$ is defined as

$$(g,h)\circ(g',h')=(g\star g',h\otimes h').$$

• Chinese Remainder Theorem: Let N = pq where p, q are integers greater than 1 which are relatively prime, i.e. gcd(p,q) = 1. Then

$$\mathbb{Z}_N \simeq \mathbb{Z}_p \times \mathbb{Z}_q$$
 and $\mathbb{Z}_N^* \simeq \mathbb{Z}_p^* \times \mathbb{Z}_q^*$.

Moreover, the function $f: \mathbb{Z}_N \mapsto \mathbb{Z}_p \times \mathbb{Z}_q$ defined by

 $f(x) = (x \bmod p, x \bmod q)$

is an isomorphism from \mathbb{Z}_N to $\mathbb{Z}_p \times \mathbb{Z}_q$, and the restriction of f to \mathbb{Z}_N^* is an isomorphism from \mathbb{Z}_N^* to $\mathbb{Z}_p^* \times \mathbb{Z}_q^*$.

- Example: $\mathbb{Z}_{15}^* = \{1, 2, 4, 7, 8, 11, 13, 14\}$. This group is isomorphic to $\mathbb{Z}_3^* \times \mathbb{Z}_5^*$.
- An extension of the Chinese remainder theorem says that if $p_1, p_2 \dots, p_l$ are pairwise relatively prime (i.e., $gcd(p_i, p_j) = 1$ for all $i \neq j$) and $N = \prod_{i=1}^{l} p_i$, then

$$\mathbb{Z}_N \simeq \mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2} \times \cdots \times \mathbb{Z}_{p_l}$$
 and $\mathbb{Z}_N^* \simeq \mathbb{Z}_{p_1}^* \times \mathbb{Z}_{p_2}^* \times \cdots \times \mathbb{Z}_{p_l}^*$.

- Usage
 - Compute $14\cdot 13 \bmod 15$
 - Compute $11^{53} \mod 15$
 - Compute $18^{25} \mod 35$
- How to go from $(x_p, x_q) = (x \mod p, x \mod q)$ to $x \mod N$ where gcd(p, q) = 1?
 - Compute X, Y such that Xp + Yq = 1.
 - Set $1_p \coloneqq Yq \mod N$ and $1_q \coloneqq Xp \mod N$.
 - Compute $x \coloneqq x_p \cdot 1_p + x_q \cdot 1_q \mod N$.
- Example: p = 5, q = 7 and N = 35. What does (4, 3) correspond to?
- Let m_1, m_2, \ldots, m_l be pairwise relatively prime positive integers. Then the unique solution modulo $M = m_1 m_2 \cdots m_l$ of the system of congruences

$$x = a_1 \mod m_1$$
$$x = a_2 \mod m_2$$
$$\vdots$$
$$x = a_l \mod m_l$$

is given by

$$x = a_1 M_1 y_1 + a_2 M_2 y_2 + \dots + a_l M_l y_l$$

where $M_i = \frac{M}{m_i}$ and $M_i y_i = 1 \mod m_i$.

• Example: Solve for x modulo 105 which satisfied the following congruences.

$$x = 1 \mod 3$$
$$x = 2 \mod 5$$
$$x = 3 \mod 7$$

6 References and Additional Reading

- Section 8.3.1 from Katz/Lindell
- Sections 8.1.4, 8.1.5 from Katz/Lindell