EE 720: An Introduction to Number Theory and Cryptography (Spring 2019)

Lecture 18 — March 18, 2019

Instructor: Saravanan Vijayakumaran Scribe: Saravanan Vijayakumaran

1 Lecture Plan

- Chinese Remainder Theorem
- RSA Encryption

2 Chinese Remainder Theorem

• Chinese Remainder Theorem: Let N = pq where p, q are integers greater than 1 which are relatively prime, i.e. gcd(p,q) = 1. Then

$$\mathbb{Z}_N \simeq \mathbb{Z}_p \times \mathbb{Z}_q$$
 and $\mathbb{Z}_N^* \simeq \mathbb{Z}_p^* \times \mathbb{Z}_q^*$.

Moreover, the function $f : \mathbb{Z}_N \mapsto \mathbb{Z}_p \times \mathbb{Z}_q$ defined by

$$f(x) = (x \bmod p, x \bmod q)$$

is an isomorphism from \mathbb{Z}_N to $\mathbb{Z}_p \times \mathbb{Z}_q$, and the restriction of f to \mathbb{Z}_N^* is an isomorphism from \mathbb{Z}_N^* to $\mathbb{Z}_p^* \times \mathbb{Z}_q^*$.

- Example: $\mathbb{Z}_{15}^* = \{1, 2, 4, 7, 8, 11, 13, 14\}$. This group is isomorphic to $\mathbb{Z}_3^* \times \mathbb{Z}_5^*$.
- An extension of the Chinese remainder theorem says that if $p_1, p_2 \dots, p_l$ are pairwise relatively prime (i.e., $gcd(p_i, p_j) = 1$ for all $i \neq j$) and $N = \prod_{i=1}^{l} p_i$, then

 $\mathbb{Z}_N \simeq \mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2} \times \cdots \times \mathbb{Z}_{p_l}$ and $\mathbb{Z}_N^* \simeq \mathbb{Z}_{p_1}^* \times \mathbb{Z}_{p_2}^* \times \cdots \times \mathbb{Z}_{p_l}^*$.

- Usage
 - Compute $11^{53} \mod 15$
 - Compute $29^{100} \mod 35$
 - Compute $18^{25} \mod 35$
- How to go from $(x_p, x_q) = (x \mod p, x \mod q)$ to $x \mod N$ where gcd(p, q) = 1?
 - Compute X, Y such that Xp + Yq = 1.
 - Set $1_p \coloneqq Yq \mod N$ and $1_q \coloneqq Xp \mod N$.
 - Compute $x \coloneqq x_p \cdot 1_p + x_q \cdot 1_q \mod N$.
- Example: p = 5, q = 7 and N = 35. What does (4, 3) correspond to?

• Let p_1, p_2, \ldots, p_l be pairwise relatively prime positive integers. Then the unique solution modulo $M = p_1 p_2 \cdots p_l$ of the system of congruences

$$x = a_1 \mod p_1$$
$$x = a_2 \mod p_2$$
$$\vdots$$
$$x = a_l \mod p_l$$

is given by

$$x = a_1 M_1 y_1 + a_2 M_2 y_2 + \dots + a_l M_l y_l$$

where $M_i = \frac{M}{p_i}$ and $M_i y_i = 1 \mod p_i$.

• Example: Solve for x modulo 105 which satisfied the following congruences.

```
x = 1 \mod 3x = 2 \mod 5x = 3 \mod 7
```

3 RSA Encryption

- Given a composite integer N, the factoring problem is to find integers p, q > 1 such that pq = N.
- One can find factors of N by *trial division*, i.e. exhaustively checking if p divides N for $p = 2, 3, \ldots, \lfloor \sqrt{N} \rfloor$. But trial division has running time $\mathcal{O}\left(\sqrt{N} \cdot \operatorname{polylog}(N)\right) = \mathcal{O}\left(2^{\|N\|/2} \cdot \|N\|^c\right)$ which is exponential in the input length $\|N\|$.

3.1 The Factoring Assumption

- Let GenModulus be a polynomial-time algorithm that, on input 1^n , outputs (N, p, q) where N = pq, and p and q are n-bit primes except with probability negligible in n.
- The factoring experiment $Factor_{\mathcal{A}, GenModulus}(n)$:
 - 1. Run GenModulus (1^n) to obtain (N, p, q).
 - 2. \mathcal{A} is given N, and outputs p', q' > 1.
 - 3. The output of the experiment is 1 if N = p'q', and 0 otherwise.
- We use p', q' in the above experiment because it is possible that GenModulus returns composite integers p, q albeit with negligible probability. In this case, we could find factors of N other than p and q.
- Definition: Factoring is hard relative to GenModulus if for all PPT algorithms \mathcal{A} there exists a negligible function negl such that $\Pr[\texttt{Factor}_{\mathcal{A},\texttt{GenModulus}}(n) = 1] \leq \texttt{negl}(n)$.
- The **factoring assumption** states that there exists a **GenModulus** relative to which factoring is hard.

3.2 Plain RSA

- Let GenRSA be a PPT algorithm that on input 1^n , outputs a modulus N that is the product of two n-bit primes, along with integers e, d > 1 satisfying $ed = 1 \mod \phi(N)$.
- If we chose e > 1 such that $gcd(e, \phi(N)) = 1$, then the multiplicative inverse d of e in \mathbb{Z}_N^* will satisfy the required conditions.
- Define a public-key encryption scheme as follows:
 - Gen: On input 1^n run GenRSA (1^n) to obtain N, e, and d. The public key is $\langle N, e \rangle$ and the private key is $\langle N, d \rangle$.
 - Enc: On input a public key $pk = \langle N, e \rangle$ and message $m \in \mathbb{Z}_N^*$, compute the ciphertext $c = m^e \mod N$.
 - Dec: On input a private key $sk = \langle N, d \rangle$ and ciphertext $c \in \mathbb{Z}_N^*$, output $\hat{m} = c^d \mod N$.
- Example: Suppose GenRSA outputs (N, e, d) = (391, 3, 235). Note that $391 = 17 \times 23$ and $\phi(391) = 16 \times 22 = 352$. Also $3 \times 235 = 1 \mod 352$.

The message $m = 158 \in \mathbb{Z}_{391}^*$ is encrypted using public key (391, 3) as $c = 158^3 \mod 391 = 295$.

Decryption of m is done as $295^{235} \mod 391 = 158$.

4 References and Additional Reading

- Section 8.1.5 from Katz/Lindell
- Sections 8.2.3, 11.5.1 from Katz/Lindell