EE 720: An Introduction to Number Theory and Cryptography (Spring 2019)
Lecture 18 - March 18, 2019
Instructor: Saravanan Vijayakumaran
Scribe: Saravanan Vijayakumaran

1 Lecture Plan

- Chinese Remainder Theorem
- RSA Encryption

2 Chinese Remainder Theorem

- Chinese Remainder Theorem: Let $N=p q$ where p, q are integers greater than 1 which are relatively prime, i.e. $\operatorname{gcd}(p, q)=1$. Then

$$
\mathbb{Z}_{N} \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{q} \text { and } \mathbb{Z}_{N}^{*} \simeq \mathbb{Z}_{p}^{*} \times \mathbb{Z}_{q}^{*}
$$

Moreover, the function $f: \mathbb{Z}_{N} \mapsto \mathbb{Z}_{p} \times \mathbb{Z}_{q}$ defined by

$$
f(x)=(x \bmod p, x \bmod q)
$$

is an isomorphism from \mathbb{Z}_{N} to $\mathbb{Z}_{p} \times \mathbb{Z}_{q}$, and the restriction of f to \mathbb{Z}_{N}^{*} is an isomorphism from \mathbb{Z}_{N}^{*} to $\mathbb{Z}_{p}^{*} \times \mathbb{Z}_{q}^{*}$.

- Example: $\mathbb{Z}_{15}^{*}=\{1,2,4,7,8,11,13,14\}$. This group is isomorphic to $\mathbb{Z}_{3}^{*} \times \mathbb{Z}_{5}^{*}$.
- An extension of the Chinese remainder theorem says that if $p_{1}, p_{2} \ldots, p_{l}$ are pairwise relatively prime (i.e., $\operatorname{gcd}\left(p_{i}, p_{j}\right)=1$ for all $i \neq j$) and $N=\Pi_{i=1}^{l} p_{i}$, then

$$
\mathbb{Z}_{N} \simeq \mathbb{Z}_{p_{1}} \times \mathbb{Z}_{p_{2}} \times \cdots \times \mathbb{Z}_{p_{l}} \text { and } \mathbb{Z}_{N}^{*} \simeq \mathbb{Z}_{p_{1}}^{*} \times \mathbb{Z}_{p_{2}}^{*} \times \cdots \times \mathbb{Z}_{p_{l}}^{*}
$$

- Usage
- Compute $11^{53} \bmod 15$
- Compute $29^{100} \bmod 35$
- Compute $18^{25} \bmod 35$
- How to go from $\left(x_{p}, x_{q}\right)=(x \bmod p, x \bmod q)$ to $x \bmod N$ where $\operatorname{gcd}(p, q)=1$?
- Compute X, Y such that $X p+Y q=1$.
- Set $1_{p}:=Y q \bmod N$ and $1_{q}:=X p \bmod N$.
- Compute $x:=x_{p} \cdot 1_{p}+x_{q} \cdot 1_{q} \bmod N$.
- Example: $p=5, q=7$ and $N=35$. What does $(4,3)$ correspond to?
- Let $p_{1}, p_{2}, \ldots, p_{l}$ be pairwise relatively prime positive integers. Then the unique solution modulo $M=p_{1} p_{2} \cdots p_{l}$ of the system of congruences

$$
\begin{aligned}
& x=a_{1} \bmod p_{1} \\
& x=a_{2} \bmod p_{2} \\
& \vdots \\
& x=a_{l} \bmod p_{l}
\end{aligned}
$$

is given by

$$
x=a_{1} M_{1} y_{1}+a_{2} M_{2} y_{2}+\cdots+a_{l} M_{l} y_{l}
$$

where $M_{i}=\frac{M}{p_{i}}$ and $M_{i} y_{i}=1 \bmod p_{i}$.

- Example: Solve for x modulo 105 which satisfied the following congruences.

$$
\begin{aligned}
& x=1 \bmod 3 \\
& x=2 \bmod 5 \\
& x=3 \bmod 7
\end{aligned}
$$

3 RSA Encryption

- Given a composite integer N, the factoring problem is to find integers $p, q>1$ such that $p q=N$.
- One can find factors of N by trial division, i.e. exhaustively checking if p divides N for $p=$ $2,3, \ldots,\lfloor\sqrt{N}\rfloor$. But trial division has running time $\mathcal{O}(\sqrt{N} \cdot \operatorname{polylog}(N))=\mathcal{O}\left(2^{\|N\| / 2} \cdot\|N\|^{c}\right)$ which is exponential in the input length $\|N\|$.

3.1 The Factoring Assumption

- Let GenModulus be a polynomial-time algorithm that, on input 1^{n}, outputs (N, p, q) where $N=p q$, and p and q are n-bit primes except with probability negligible in n.
- The factoring experiment Factor $_{\mathcal{A}, \operatorname{GenModulus}}(n)$:

1. Run GenModulus $\left(1^{n}\right)$ to obtain (N, p, q).
2. \mathcal{A} is given N, and outputs $p^{\prime}, q^{\prime}>1$.
3. The output of the experiment is 1 if $N=p^{\prime} q^{\prime}$, and 0 otherwise.

- We use p^{\prime}, q^{\prime} in the above experiment because it is possible that GenModulus returns composite integers p, q albeit with negligible probability. In this case, we could find factors of N other than p and q.
- Definition: Factoring is hard relative to GenModulus if for all PPT algorithms \mathcal{A} there exists a negligible function negl such that $\operatorname{Pr}\left[\operatorname{Factor}_{\mathcal{A} \text {,GenModulus }}(n)=1\right] \leq \operatorname{negl}(n)$.
- The factoring assumption states that there exists a GenModulus relative to which factoring is hard.

3.2 Plain RSA

- Let GenRSA be a PPT algorithm that on input 1^{n}, outputs a modulus N that is the product of two n-bit primes, along with integers $e, d>1$ satisfying $e d=1 \bmod \phi(N)$.
- If we chose $e>1$ such that $\operatorname{gcd}(e, \phi(N))=1$, then the multiplicative inverse d of e in \mathbb{Z}_{N}^{*} will satisfy the required conditions.
- Define a public-key encryption scheme as follows:
- Gen: On input 1^{n} run $\operatorname{GenRSA}\left(1^{n}\right)$ to obtain N, e, and d. The public key is $\langle N, e\rangle$ and the private key is $\langle N, d\rangle$.
- Enc: On input a public key $p k=\langle N, e\rangle$ and message $m \in \mathbb{Z}_{N}^{*}$, compute the ciphertext $c=m^{e} \bmod N$.
- Dec: On input a private key $s k=\langle N, d\rangle$ and ciphertext $c \in \mathbb{Z}_{N}^{*}$, output $\hat{m}=c^{d} \bmod N$.
- Example: Suppose GenRSA outputs $(N, e, d)=(391,3,235)$. Note that $391=17 \times 23$ and $\phi(391)=16 \times 22=352$. Also $3 \times 235=1 \bmod 352$.
The message $m=158 \in \mathbb{Z}_{391}^{*}$ is encrypted using public key $(391,3)$ as $c=158^{3} \bmod 391=$ 295.

Decryption of m is done as $295^{235} \bmod 391=158$.

4 References and Additional Reading

- Section 8.1.5 from Katz/Lindell
- Sections 8.2.3, 11.5.1 from Katz/Lindell

