
EE 720: An Introduction to Number Theory and Cryptography (Spring 2019)

Lecture 18 — March 18, 2019

Instructor: Saravanan Vijayakumaran Scribe: Saravanan Vijayakumaran

1 Lecture Plan

• Chinese Remainder Theorem

• RSA Encryption

2 Chinese Remainder Theorem

• Chinese Remainder Theorem: Let N = pq where p, q are integers greater than 1 which
are relatively prime, i.e. gcd(p, q) = 1. Then

ZN ' Zp × Zq and Z∗N ' Z∗p × Z∗q .

Moreover, the function f : ZN 7→ Zp × Zq defined by

f(x) = (x mod p, x mod q)

is an isomorphism from ZN to Zp×Zq, and the restriction of f to Z∗N is an isomorphism from
Z∗N to Z∗p × Z∗q .

• Example: Z∗15 = {1, 2, 4, 7, 8, 11, 13, 14}. This group is isomorphic to Z∗3 × Z∗5.

• An extension of the Chinese remainder theorem says that if p1, p2 . . . , pl are pairwise relatively
prime (i.e., gcd(pi, pj) = 1 for all i 6= j) and N = Πl

i=1pi, then

ZN ' Zp1 × Zp2 × · · · × Zpl and Z∗N ' Z∗p1 × Z∗p2 × · · · × Z∗pl .

• Usage

– Compute 1153 mod 15

– Compute 29100 mod 35

– Compute 1825 mod 35

• How to go from (xp, xq) = (x mod p, x mod q) to x mod N where gcd(p, q) = 1?

– Compute X,Y such that Xp+ Y q = 1.

– Set 1p := Y q mod N and 1q := Xp mod N .

– Compute x := xp · 1p + xq · 1q mod N .

• Example: p = 5, q = 7 and N = 35. What does (4, 3) correspond to?
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• Let p1, p2, . . . , pl be pairwise relatively prime positive integers. Then the unique solution
modulo M = p1p2 · · · pl of the system of congruences

x = a1 mod p1

x = a2 mod p2
...

x = al mod pl

is given by
x = a1M1y1 + a2M2y2 + · · ·+ alMlyl

where Mi = M
pi

and Miyi = 1 mod pi.

• Example: Solve for x modulo 105 which satisfied the following congruences.

x = 1 mod 3

x = 2 mod 5

x = 3 mod 7

3 RSA Encryption

• Given a composite integer N , the factoring problem is to find integers p, q > 1 such that
pq = N .

• One can find factors of N by trial division, i.e. exhaustively checking if p divides N for p =

2, 3, . . . , b
√
Nc. But trial division has running timeO

(√
N · polylog(N)

)
= O

(
2‖N‖/2 · ‖N‖c

)
which is exponential in the input length ‖N‖.

3.1 The Factoring Assumption

• Let GenModulus be a polynomial-time algorithm that, on input 1n, outputs (N, p, q) where
N = pq, and p and q are n-bit primes except with probability negligible in n.

• The factoring experiment FactorA,GenModulus(n):

1. Run GenModulus(1n) to obtain (N, p, q).

2. A is given N , and outputs p′, q′ > 1.

3. The output of the experiment is 1 if N = p′q′, and 0 otherwise.

• We use p′, q′ in the above experiment because it is possible that GenModulus returns composite
integers p, q albeit with negligible probability. In this case, we could find factors of N other
than p and q.

• Definition: Factoring is hard relative to GenModulus if for all PPT algorithms A there
exists a negligible function negl such that Pr[FactorA,GenModulus(n) = 1] ≤ negl(n).

• The factoring assumption states that there exists a GenModulus relative to which factoring
is hard.
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3.2 Plain RSA

• Let GenRSA be a PPT algorithm that on input 1n, outputs a modulus N that is the product
of two n-bit primes, along with integers e, d > 1 satisfying ed = 1 mod φ(N).

• If we chose e > 1 such that gcd(e, φ(N)) = 1, then the multiplicative inverse d of e in Z∗N will
satisfy the required conditions.

• Define a public-key encryption scheme as follows:

– Gen: On input 1n run GenRSA(1n) to obtain N , e, and d. The public key is 〈N, e〉 and
the private key is 〈N, d〉.

– Enc: On input a public key pk = 〈N, e〉 and message m ∈ Z∗N , compute the ciphertext
c = me mod N .

– Dec: On input a private key sk = 〈N, d〉 and ciphertext c ∈ Z∗N , output m̂ = cd mod N .

• Example: Suppose GenRSA outputs (N, e, d) = (391, 3, 235). Note that 391 = 17 × 23 and
φ(391) = 16× 22 = 352. Also 3× 235 = 1 mod 352.

The message m = 158 ∈ Z∗391 is encrypted using public key (391, 3) as c = 1583 mod 391 =
295.

Decryption of m is done as 295235 mod 391 = 158.

4 References and Additional Reading

• Section 8.1.5 from Katz/Lindell

• Sections 8.2.3, 11.5.1 from Katz/Lindell
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