EE 720: An Introduction to Number Theory and Cryptography (Spring 2019)

Lecture 19 — March 25, 2019

Instructor: Saravanan Vijayakumaran Scribe: Saravanan Vijayakumaran

1 Lecture Plan

• Primality Testing Algorithms

2 Primality Testing

- GenRSA is a PPT algorithm that on input 1^n , outputs a modulus N that is the product of two n-bit primes, along with integers $e, d > 1$ satisfying $ed = 1 \text{ mod } \phi(N)$.
- But how to randomly generate n -bit primes? Generate a random n -bit odd integer and check whether it is prime.
- Bertrand's postulate: For any $n > 1$, the fraction of *n*-bit integers that are primes is at least $\frac{1}{3n}$.
- So if we choose $3n^2$ random *n*-bit integers, the probability that a prime is not chosen is at most

$$
\left(1 - \frac{1}{3n}\right)^{3n^2} = \left(\left(1 - \frac{1}{3n}\right)^{3n}\right)^n \le (e^{-1})^n = e^{-n}.
$$

We have use the result that for all $x \geq 1$ it holds that $\left(1 - \frac{1}{x}\right)$ $(\frac{1}{x})^x \le e^{-1}.$

- Fermat's little theorem: If p is a prime and a is any integer not divisible by p , then $a^{p-1} = 1 \mod p.$
- For $a \in \{1, 2, ..., N-1\}$, if $a \notin \mathbb{Z}_N^*$ then $a^{N-1} \neq 1 \mod N$, i.e. such an a is a witness for the compositeness of N. This is because $gcd(a, N) \neq 1$ implies $gcd(a^{N-1}, N) \neq 1$. Then $a^{N-1} \neq 1 \text{ mod } N$. To see why, recall that the gcd of two integers is the smallest positive integer which can be written as a linear combination of those integers.
- But integers in the range $1, 2, ..., N-1$ not belonging to \mathbb{Z}_N^* are rare. If N is prime, then there are no such integers as $\mathbb{Z}_N^* = \{1, 2, ..., N-1\}$. For composite $N = p_1^{e_1} \cdots p_k^{e_k}$ where p_1, p_2, \ldots, p_k are distinct primes and e_1, e_2, \ldots, e_k are positive integers, the cardinality of \mathbb{Z}_N^* is $\phi(N) = p_1^{e_1-1}(p_1-1)\cdots p_k^{e_k-1}(p_k-1)$. Then the probability that a random element in $\{1, 2, \ldots, N-1\}$ is in \mathbb{Z}_N^* is given by

$$
\frac{\phi(N)}{N-1} \approx \frac{\phi(N)}{N} = \left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\cdots\left(1 - \frac{1}{p_k}\right).
$$

If p_1, p_2, \ldots, p_k are large primes, then this fraction is close to 1. If they are small primes, then it is easy to check that N is composite and fancy primality testing algorithms are not required.

- With this context, let us focus on the integers in \mathbb{Z}_N^* . For an integer N, we say that the integer $a \in \mathbb{Z}_N^*$ is a witness for compositeness of N if $a^{N-1} \neq 1 \text{ mod } N$.
- For $a \in \{1, 2, ..., N-1\}$, if $a \in \mathbb{Z}_N^*$ then $gcd(a, N) = 1$ and $gcd(a^{N-1}, N) = 1$. This implies that $Xa^{N-1} + Yn = 1$ for some integers X, Y . So $Xa^{N-1} = 1 \text{ mod } N$ but $a^{N-1} \text{ mod } N$ may or may not be equal to 1. So the a's in \mathbb{Z}_N^* may or may not be witnesses.
- Theorem: If there exists a witness (in \mathbb{Z}_N^*) that N is composite, then at least half the elements of \mathbb{Z}_N^* are witnesses that N is composite.

Proof. Consider the subset H of \mathbb{Z}_N^* which consists of elements $a \in \mathbb{Z}_N^*$ satisfying $a^{N-1} =$ 1 mod N. In other words, H is the set of elements in \mathbb{Z}_N^* which are not witnesses. H is a subgroup of \mathbb{Z}_N^* by the below Proposition. By the hypothesis, $H \neq \mathbb{Z}_N^*$. By Lagrange's theorem, the order of H is a proper divisor of $|\mathbb{Z}_N^*|$. Since the largest proper divisor of an integer m is possibly $m/2$, the size of H is at most $|\mathbb{Z}_N^*/2|$. So at least half the elements of \mathbb{Z}_N^* are witnesses that N is composite. \Box

- Proposition 8.36: Let G be a finite group and $H \subseteq G$. If H is nonempty and for all $a, b \in H$ we have $ab \in H$, then H is a subgroup of G.
- Suppose there is a composite integer N for which a witness for compositeness exists. Consider the following procedure which fails to detect the compositeness of N with probability at most 2^{-t} .
	- 1. For $i = 1, 2, \ldots, t$, repeat steps 2 and 3.
	- 2. Pick a uniformly from $\{1, 2, \ldots, N-1\}$.
	- 3. If $a^{N-1} \neq 1 \mod N$, return "composite".
	- 4. If all the t iterations had $a^{N-1} = 1 \mod N$, return "prime".
- But there exist composite numbers for which $a^{N-1} = 1 \text{ mod } N$ for all integers $a \in \mathbb{Z}_N^*$. These are called *Carmichael numbers*. The number $561 = 3 \cdot 11 \cdot 17$ is one such number.

2.1 Miller-Rabin Primality Test

- The Miller-Rabin algorithm takes two inputs: an integer p and a parameter t (in unary format) that determines the error probability. It runs in time polynomial in $||p||$ and t.
- Theorem: If p is prime, then the Miller-Rabin test always outputs "prime". If p is composite, then the algorithm outputs "composite" except with probability at most 2^{-t} .
- The algorithm for generating a random n-bit prime using the Miller-Rabin test is shown in Algorithm [1.](#page-2-0)
- Lemma: We say that $x \in \mathbb{Z}_N^*$ is a square root of 1 modulo N if $x^2 = 1 \mod N$. If N is an odd prime, then the only square roots of [1](#page-1-0) modulo N are ± 1 mod N ¹.
- The Miller-Rabin primality test is based on the above lemma.

¹Note that -1 mod $N = N - 1 \in \mathbb{Z}_N^*$

Algorithm 1 Generating a random n -bit prime

Input: Length n **Output:** A uniform n -bit prime for $i=1$ to $3n^2$ do $p' \leftarrow \{0, 1\}^{n-2}$ $p \coloneqq 1 || p' || 1$ Run the Miller-Rabin test on p if the output is "prime," then return p return fail

• By Fermat's little theorem, if N is an odd prime $a^{N-1} = 1 \text{ mod } N$ for all $a \in \{1, 2, \ldots, N-1\}.$ Suppose $N - 1 = 2^ru$ where $r \ge 1$ is an integer and u is an odd integer. Then

 $a^u \bmod N$, $a^{2u} \bmod N$, $a^{2^2u} \bmod N$, $a^{2^3u} \bmod N$, ..., $a^{2^ru} \bmod N$

is a sequence where each element is the square of the previous element. In other words, each element is the square root modulo N of the next element. Since the last element in the sequence is a 1, by the above lemma the previous elements can only be ± 1 . So one of two things can happen:

- Either $a^u = 1$ mod N. In this case, the whole sequence has only ones.
- − Or one of a^u mod N, a^{2u} mod N, a^{2^2u} mod N, a^{2^3u} mod N, ..., $a^{2^{r-1}u}$ mod N is equal to -1 .
- We say that $a \in \mathbb{Z}_N^*$ is a strong witness that N is composite if both the above conditions do not hold. If we can find even one strong witness, we can conclude that N is composite.
- We say that a integer N is a **prime power** if $N = p^r$ where $r \ge 1$.
- Theorem: Let N be an odd number that is not a prime power. Then at least half the elements of \mathbb{Z}_N^* are strong witnesses that N is composite.
- An integer N is a **perfect power** if $N = \hat{N}^e$ for integers \hat{N} and $e \geq 2$. There exists a polynomial time algorithm to check that a given integer is a perfect power. If N is a perfect power, it is composite. If N is not a perfect power and it is not a prime, it cannot be a prime power. So the hypothesis of the above theorem will be satisfied.
- The Miller-Rabin test is given in Algorithm [2.](#page-3-0)

3 References and Additional Reading

• Sections 8.2.1, 8.2.2 from Katz/Lindell

Algorithm 2 The Miller-Rabin primality test

Input: Odd integer $N > 2$ and parameter 1^t **Output:** A decision as to whether N is prime or composite if N is a perfect power then return composite Compute $r \geq 1$ and odd u such that $N - 1 = 2^ru$ for $j = 1$ to t do $a \leftarrow \{0, \ldots, N-1\}$ if $a^u \neq \pm 1 \mod N$ and $a^{2^i u} \neq -1 \mod N$ for $i \in \{1, \ldots, r-1\}$ then return composite return fail