EE 720: An Introduction to Number Theory and Cryptography (Spring 2019)

Lecture $20 -$ April 1, 2019

Instructor: Saravanan Vijayakumaran Scribe: Saravanan Vijayakumaran

1 Lecture Plan

- Miller-Rabin Primality Test
- Relating the RSA and Factoring Assumptions

2 Recap

- Fermat's little theorem: If p is a prime and a is any integer not divisible by p, then $a^{p-1} = 1 \mod p.$
- For $a \in \{1, 2, ..., N-1\}$, if $a \notin \mathbb{Z}_N^*$ then $a^{N-1} \neq 1 \mod N$, i.e. such an a is a witness for the compositeness of N.
- But integers in the range $1, 2, ..., N-1$ not belonging to \mathbb{Z}_N^* are rare.
- For an integer N, we say that the integer $a \in \mathbb{Z}_N^*$ is a witness for compositeness of N if $a^{N-1} \neq 1 \mod N$.
- Theorem: If there exists a witness (in \mathbb{Z}_N^*) that N is composite, then at least half the elements of \mathbb{Z}_N^* are witnesses that N is composite.
- But there exist composite numbers for which $a^{N-1} = 1 \text{ mod } N$ for all integers $a \in \mathbb{Z}_N^*$. These are called *Carmichael numbers*. The number $561 = 3 \cdot 11 \cdot 17$ is one such number.

2.1 Miller-Rabin Primality Test

- The Miller-Rabin algorithm takes two inputs: an integer p and a parameter t (in unary format) that determines the error probability. It runs in time polynomial in $||p||$ and t.
- **Theorem:** If p is prime, then the Miller-Rabin test always outputs "prime". If p is composite, then the algorithm outputs "composite" except with probability at most 2^{-t} .
- The algorithm for generating a random n -bit prime using the Miller-Rabin test is shown in Algorithm [1.](#page-1-0)
- Lemma: We say that $x \in \mathbb{Z}_N^*$ is a square root of 1 modulo N if $x^2 = 1 \mod N$. If N is an odd prime, then the only square roots of [1](#page-0-0) modulo N are ± 1 mod N ¹.

¹Note that -1 mod $N = N - 1 \in \mathbb{Z}_N^*$

Algorithm 1 Generating a random n -bit prime

Input: Length n **Output:** A uniform n -bit prime for $i = 1$ to $3n^2$ do $p' \leftarrow \{0, 1\}^{n-2}$ $p \coloneqq 1 || p' || 1$ Run the Miller-Rabin test on p if the output is "prime," then return p return fail

• By Fermat's little theorem, if N is an odd prime $a^{N-1} = 1 \text{ mod } N$ for all $a \in \{1, 2, \ldots, N-1\}.$ Suppose $N - 1 = 2^ru$ where $r \ge 1$ is an integer and u is an odd integer. Then

 $a^u \bmod N$, $a^{2u} \bmod N$, $a^{2^2u} \bmod N$, $a^{2^3u} \bmod N$, ..., $a^{2^ru} \bmod N$

is a sequence where each element is the square of the previous element. In other words, each element is the square root modulo N of the next element. Since the last element in the sequence is a 1, by the above lemma the previous elements can only be ± 1 . So one of two things can happen:

- Either $a^u = 1$ mod N. In this case, the whole sequence has only ones.
- − Or one of a^u mod N, a^{2u} mod N, a^{2^2u} mod N, a^{2^3u} mod N, ..., $a^{2^{r-1}u}$ mod N is equal to -1 .
- We say that $a \in \mathbb{Z}_N^*$ is a strong witness that N is composite if both the above conditions do not hold. If we can find even one strong witness, we can conclude that N is composite.

3 Miller-Rabin Primality Test (contd)

- We say that a integer N is a **prime power** if $N = p^r$ where $r \ge 1$.
- Theorem: Let $N > 1$ be an odd number that is not a prime power. Then at least half the elements of \mathbb{Z}_N^* are strong witnesses that N is composite.
- Proof outline:
	- − Let Bad $\subseteq \mathbb{Z}_N^*$ be the set of elements that are **not** strong witnesses.
	- $-$ We define a set Bad' such that:
		- 1. Bad is a subset of Bad'.
		- 2. Bad' is a strict subgroup of \mathbb{Z}_N^* . This implies that Bad' $\leq |\mathbb{Z}_N^*|/2$.

As Bad \subseteq Bad', we get Bad \leq Bad' \leq |Z_N'. So at least half the elements of \mathbb{Z}_N^* are strong witnesses.

• An integer N is a **perfect power** if $N = \hat{N}^e$ for integers \hat{N} and $e \geq 2$. There exists a polynomial time algorithm to check that a given integer is a perfect power. If N is a perfect power, it is composite. If N is not a perfect power and it is not a prime, it cannot be a prime power. So the hypothesis of the above theorem will be satisfied.

• The Miller-Rabin test is given in Algorithm [2.](#page-2-0)

4 Revisiting RSA

4.1 The Factoring Assumption

- Let GenModulus be a polynomial-time algorithm that, on input 1^n , outputs (N, p, q) where $N = pq$, and p and q are n-bit primes except with probability negligible in n.
- The factoring experiment Factor A , GenModulus (n) :
	- 1. Run GenModulus (1^n) to obtain (N, p, q) .
	- 2. A is given N, and outputs $p', q' > 1$.
	- 3. The output of the experiment is 1 if $N = p'q'$, and 0 otherwise.
- We use p', q' in the above experiment because it is possible that GenModulus returns composite integers p, q albeit with negligible probability. In this case, we could find factors of N other than p and q .
- Definition: Factoring is hard relative to GenModulus if for all PPT algorithms A there exists a negligible function negl such that $Pr[Factor_{A,GenModulus}(n) = 1] \leq neg1(n)$.
- The factoring assumption states that there exists a GenModulus relative to which factoring is hard.

4.2 The RSA Assumption

- Let GenRSA be a PPT algorithm that on input 1^n , outputs a modulus N that is the product of two *n*-bit primes, along with integers $e, d > 1$ satisfying $ed = 1 \text{ mod } \phi(N)$.
- The RSA experiment RSA-inv_{A,GenRSA} (n) :
	- 1. Run GenRSA (1^n) to obtain (N, e, d) .
	- 2. Choose a uniform $y \in \mathbb{Z}_N^*$.
- 3. A is given N, e, y and outputs $x \in \mathbb{Z}_N^*$.
- 4. The output of the experiment is 1 if $x^e = y \mod N$, and 0 otherwise.
- Definition: The RSA problem is hard relative to GenRSA if for all PPT algorithms A there exists a negligible function negl such that $Pr[RSA-inv_{A,GenRSA}(n) = 1] \leq neg1(n)$.

4.3 Relating the RSA and Factoring Assumptions

- For the RSA problem to be hard relative to GenRSA, the factoring problem must be hard relative to GenModulus.
- A PPT adversary who can factor N can win in the RSA experiment while remaining a PPT adversary.
- But it is not known whether an adversary who can win the RSA experiment can factor N.
- However, it is known that an adversary who can obtain d from N and e can factor N . See Theorem 8.50 for details.
- Example: Suppose a company wants to use the same modulus N for all its employees. To avoid one employee reading the messages meant for another, the company issues different (e_i, d_i) pairs to each employee but does not reveal the factorization of N to them. But this is insecure as knowledge of e_i, d_i can be used to factor N.

5 References and Additional Reading

• Sections 8.2.1, 8.2.2, 8.2.3, 8.2.4, 8.2.5 from Katz/Lindell