EE 720: An Introduction to Number Theory and Cryptography (Spring 2019)

Lecture 20 — April 1, 2019

Instructor: Saravanan Vijayakumaran Scribe: Saravanan Vijayakumaran

1 Lecture Plan

Miller-Rabin Primality Test

Relating the RSA and Factoring Assumptions

2 Recap

2.1

Fermat’s little theorem: If p is a prime and a is any integer not divisible by p, then
a?~! =1 mod p.

Fora € {1,2,...,N — 1}, if a ¢ Z% then a™~! # 1 mod N, i.e. such an a is a witness for the
compositeness of V.

But integers in the range 1,2,..., N — 1 not belonging to Z}; are rare.

For an integer N, we say that the integer a € Z} is a witness for compositeness of N if
aV~1 =1 mod N.

Theorem: If there exists a witness (in Z};) that N is composite, then at least half the
elements of Z7; are witnesses that N is composite.

But there exist composite numbers for which ¢ =1 =1 mod N for all integers a € Z7%. These
are called Carmichael numbers. The number 561 = 3 - 11 - 17 is one such number.

Miller-Rabin Primality Test

The Miller-Rabin algorithm takes two inputs: an integer p and a parameter ¢ (in unary
format) that determines the error probability. It runs in time polynomial in ||p|| and ¢.

Theorem: If p is prime, then the Miller-Rabin test always outputs “prime”. If p is composite,
then the algorithm outputs “composite” except with probability at most 2.

The algorithm for generating a random n-bit prime using the Miller-Rabin test is shown in
Algorithm

Lemma: We say that z € Z}, is a square root of 1 modulo N if 22 =1mod N. If N is
an odd prime, then the only square roots of 1 modulo N are £1 mod N E]

Note that —1 mod N =N —1€ Z}%



Algorithm 1 Generating a random n-bit prime

Input: Length n
Output: A uniform n-bit prime
for i = 1 to 3n? do
p/ — {O, 1}n72
p=1]p/|l1
Run the Miller-Rabin test on p
if the output is “prime,” then
return p

return fail

e By Fermat’s little theorem, if N is an odd prime a’¥~! = 1 mod N for alla € {1,2,...,N—1}.
Suppose N — 1 = 2"y where r > 1 is an integer and u is an odd integer. Then

2 3 s
a*mod N, a** mod N, a**mod N, a>“mod N, ..., a*“mod N

is a sequence where each element is the square of the previous element. In other words, each
element is the square root modulo N of the next element. Since the last element in the
sequence is a 1, by the above lemma the previous elements can only be +1. So one of two
things can happen:

— Either a* = 1 mod N. In this case, the whole sequence has only ones.
— Or one of ¢* mod N, a®* mod N, a2** mod N, a2’* mod N, ..., a2 "% mod N is equal
to —1.

o We say that a € Z} is a strong witness that N is composite if both the above conditions
do not hold. If we can find even one strong witness, we can conclude that N is composite.

3 Miller-Rabin Primality Test (contd)

o We say that a integer IV is a prime power if N = p” where r > 1.

e Theorem: Let N > 1 be an odd number that is not a prime power. Then at least half the
elements of Z}; are strong witnesses that N is composite.

e Proof outline:

— Let Bad C Z} be the set of elements that are not strong witnesses.
— We define a set Bad’ such that:
1. Bad is a subset of Bad'.
2. Bad' is a strict subgroup of Z%,. This implies that Bad’ < |Z%] /2.

As Bad C Bad’, we get Bad < Bad' < |Z%/|. So at least half the elements of Z%; are strong
witnesses.

e An integer N is a perfect power if N = Ne¢ for integers N and e > 2. There exists a
polynomial time algorithm to check that a given integer is a perfect power. If N is a perfect
power, it is composite. If IV is not a perfect power and it is not a prime, it cannot be a prime
power. So the hypothesis of the above theorem will be satisfied.



Algorithm 2 The Miller-Rabin primality test

Input: Odd integer N > 2 and parameter 1°
Output: A decision as to whether N is prime or composite

if N is a perfect power then

return composite

Compute r > 1 and odd u such that N — 1 =2"u
for j=1tot do

a<+{0,...,N—1} _
if a* # £1 mod N and a®>* # —1mod N for i € {1,...,7 — 1} then
return composite

return fail

The Miller-Rabin test is given in Algorithm

4 Revisiting RSA

4.1 The Factoring Assumption

4.2

Let GenModulus be a polynomial-time algorithm that, on input 1", outputs (N, p,q) where
N = pq, and p and ¢ are n-bit primes except with probability negligible in n.

The factoring experiment Factor 4 genmodulus(7):

1. Run GenModulus(1™) to obtain (N, p,q).
2. Ais given N, and outputs p’, ¢’ > 1.
3. The output of the experiment is 1 if N = p’¢/, and 0 otherwise.

We use p’, ¢ in the above experiment because it is possible that GenModulus returns composite
integers p, q albeit with negligible probability. In this case, we could find factors of N other
than p and q.

Definition: Factoring is hard relative to GenModulus if for all PPT algorithms A there
exists a negligible function negl such that Pr[Factor 4 genModuius(”) = 1] < negl(n).

The factoring assumption states that there exists a GenModulus relative to which factoring
is hard.

The RSA Assumption

Let GenRSA be a PPT algorithm that on input 1", outputs a modulus N that is the product
of two n-bit primes, along with integers e, d > 1 satisfying ed = 1 mod ¢(IV).

The RSA experiment RSA-inv 4 genrsa(n):

1. Run GenRSA(1") to obtain (N,e,d).

2. Choose a uniform y € Z}.



4.3

3. Ais given N, e,y and outputs x € Z},.
4. The output of the experiment is 1 if x® = y mod N, and 0 otherwise.

Definition: The RSA problem is hard relative to GenRSA if for all PPT algorithms A
there exists a negligible function negl such that Pr[RSA-inv 4 genrsa(n) = 1] < negl(n).

Relating the RSA and Factoring Assumptions

For the RSA problem to be hard relative to GenRSA, the factoring problem must be hard
relative to GenModulus.

A PPT adversary who can factor N can win in the RSA experiment while remaining a PPT
adversary.

But it is not known whether an adversary who can win the RSA experiment can factor N.

However, it is known that an adversary who can obtain d from N and e can factor N. See
Theorem 8.50 for details.

Example: Suppose a company wants to use the same modulus N for all its employees. To
avoid one employee reading the messages meant for another, the company issues different
(e4,d;) pairs to each employee but does not reveal the factorization of N to them. But this is
insecure as knowledge of e;, d; can be used to factor N.

5 References and Additional Reading

e Sections 8.2.1, 8.2.2, 8.2.3, 8.2.4, 8.2.5 from Katz/Lindell
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