
EE 720: An Introduction to Number Theory and Cryptography (Spring 2019)

Lecture 20 — April 1, 2019

Instructor: Saravanan Vijayakumaran Scribe: Saravanan Vijayakumaran

1 Lecture Plan

• Miller-Rabin Primality Test

• Relating the RSA and Factoring Assumptions

2 Recap

• Fermat’s little theorem: If p is a prime and a is any integer not divisible by p, then
ap−1 = 1 mod p.

• For a ∈ {1, 2, . . . , N − 1}, if a /∈ Z∗N then aN−1 6= 1 mod N , i.e. such an a is a witness for the
compositeness of N .

• But integers in the range 1, 2, . . . , N − 1 not belonging to Z∗N are rare.

• For an integer N , we say that the integer a ∈ Z∗N is a witness for compositeness of N if
aN−1 6= 1 mod N .

• Theorem: If there exists a witness (in Z∗N ) that N is composite, then at least half the
elements of Z∗N are witnesses that N is composite.

• But there exist composite numbers for which aN−1 = 1 mod N for all integers a ∈ Z∗N . These
are called Carmichael numbers. The number 561 = 3 · 11 · 17 is one such number.

2.1 Miller-Rabin Primality Test

• The Miller-Rabin algorithm takes two inputs: an integer p and a parameter t (in unary
format) that determines the error probability. It runs in time polynomial in ‖p‖ and t.

• Theorem: If p is prime, then the Miller-Rabin test always outputs “prime”. If p is composite,
then the algorithm outputs “composite” except with probability at most 2−t.

• The algorithm for generating a random n-bit prime using the Miller-Rabin test is shown in
Algorithm 1.

• Lemma: We say that x ∈ Z∗N is a square root of 1 modulo N if x2 = 1 mod N . If N is
an odd prime, then the only square roots of 1 modulo N are ±1 mod N .1

1Note that −1 mod N = N − 1 ∈ Z∗
N
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Algorithm 1 Generating a random n-bit prime

Input: Length n
Output: A uniform n-bit prime

for i = 1 to 3n2 do
p′ ← {0, 1}n−2
p := 1‖p′‖1
Run the Miller-Rabin test on p
if the output is “prime,” then

return p

return fail

• By Fermat’s little theorem, if N is an odd prime aN−1 = 1 mod N for all a ∈ {1, 2, . . . , N−1}.
Suppose N − 1 = 2ru where r ≥ 1 is an integer and u is an odd integer. Then

au mod N, a2u mod N, a2
2u mod N, a2

3u mod N, . . . , a2
ru mod N

is a sequence where each element is the square of the previous element. In other words, each
element is the square root modulo N of the next element. Since the last element in the
sequence is a 1, by the above lemma the previous elements can only be ±1. So one of two
things can happen:

– Either au = 1 mod N . In this case, the whole sequence has only ones.

– Or one of au mod N, a2u mod N, a2
2u mod N, a2

3u mod N, . . . , a2
r−1u mod N is equal

to −1.

• We say that a ∈ Z∗N is a strong witness that N is composite if both the above conditions
do not hold. If we can find even one strong witness, we can conclude that N is composite.

3 Miller-Rabin Primality Test (contd)

• We say that a integer N is a prime power if N = pr where r ≥ 1.

• Theorem: Let N > 1 be an odd number that is not a prime power. Then at least half the
elements of Z∗N are strong witnesses that N is composite.

• Proof outline:

– Let Bad ⊆ Z∗N be the set of elements that are not strong witnesses.

– We define a set Bad′ such that:

1. Bad is a subset of Bad′.

2. Bad′ is a strict subgroup of Z∗N . This implies that Bad′ ≤ |Z∗N | /2.

As Bad ⊆ Bad′, we get Bad ≤ Bad′ ≤ |Z∗N |. So at least half the elements of Z∗N are strong
witnesses.

• An integer N is a perfect power if N = N̂ e for integers N̂ and e ≥ 2. There exists a
polynomial time algorithm to check that a given integer is a perfect power. If N is a perfect
power, it is composite. If N is not a perfect power and it is not a prime, it cannot be a prime
power. So the hypothesis of the above theorem will be satisfied.
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Algorithm 2 The Miller-Rabin primality test

Input: Odd integer N > 2 and parameter 1t

Output: A decision as to whether N is prime or composite

if N is a perfect power then
return composite

Compute r ≥ 1 and odd u such that N − 1 = 2ru
for j = 1 to t do

a← {0, . . . , N − 1}
if au 6= ±1 mod N and a2

iu 6= −1 mod N for i ∈ {1, . . . , r − 1} then
return composite

return fail

• The Miller-Rabin test is given in Algorithm 2.

4 Revisiting RSA

4.1 The Factoring Assumption

• Let GenModulus be a polynomial-time algorithm that, on input 1n, outputs (N, p, q) where
N = pq, and p and q are n-bit primes except with probability negligible in n.

• The factoring experiment FactorA,GenModulus(n):

1. Run GenModulus(1n) to obtain (N, p, q).

2. A is given N , and outputs p′, q′ > 1.

3. The output of the experiment is 1 if N = p′q′, and 0 otherwise.

• We use p′, q′ in the above experiment because it is possible that GenModulus returns composite
integers p, q albeit with negligible probability. In this case, we could find factors of N other
than p and q.

• Definition: Factoring is hard relative to GenModulus if for all PPT algorithms A there
exists a negligible function negl such that Pr[FactorA,GenModulus(n) = 1] ≤ negl(n).

• The factoring assumption states that there exists a GenModulus relative to which factoring
is hard.

4.2 The RSA Assumption

• Let GenRSA be a PPT algorithm that on input 1n, outputs a modulus N that is the product
of two n-bit primes, along with integers e, d > 1 satisfying ed = 1 mod φ(N).

• The RSA experiment RSA-invA,GenRSA(n):

1. Run GenRSA(1n) to obtain (N, e, d).

2. Choose a uniform y ∈ Z∗N .

3



3. A is given N, e, y and outputs x ∈ Z∗N .

4. The output of the experiment is 1 if xe = y mod N , and 0 otherwise.

• Definition: The RSA problem is hard relative to GenRSA if for all PPT algorithms A
there exists a negligible function negl such that Pr[RSA-invA,GenRSA(n) = 1] ≤ negl(n).

4.3 Relating the RSA and Factoring Assumptions

• For the RSA problem to be hard relative to GenRSA, the factoring problem must be hard
relative to GenModulus.

• A PPT adversary who can factor N can win in the RSA experiment while remaining a PPT
adversary.

• But it is not known whether an adversary who can win the RSA experiment can factor N .

• However, it is known that an adversary who can obtain d from N and e can factor N . See
Theorem 8.50 for details.

• Example: Suppose a company wants to use the same modulus N for all its employees. To
avoid one employee reading the messages meant for another, the company issues different
(ei, di) pairs to each employee but does not reveal the factorization of N to them. But this is
insecure as knowledge of ei, di can be used to factor N .

5 References and Additional Reading

• Sections 8.2.1, 8.2.2, 8.2.3, 8.2.4, 8.2.5 from Katz/Lindell
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