Assignment 2: 10 points

Upload the solutions as a **pdf** file in Moodle. You can upload a scanned version of your handwritten solution. The **upload deadline** will be 11:00pm IST on Sunday, February 9, 2020.

- 1. [3 points] Consider the following private-key encryption scheme (Gen, Enc, Dec) where message space \mathcal{M} and ciphertext space \mathcal{C} are both equal to $\{0,1\}^n$. Let the key space \mathcal{K} be the set of all n! permutations of the set $\{1,\ldots,n\}$.
 - Gen: Choose k uniformly from \mathcal{K} . Let $k = (k_1, k_2, \ldots, k_n)$. For example, if n = 4 then k = (2, 1, 3, 4) is the permutation which swaps the positions of the first two elements.
 - Enc: For $m \in \{0,1\}^n$, let m[i] denote the *i*th bit of *m*. Output the ciphertext $c \in \{0,1\}^n$ as

$$c := (m[k_1], m[k_2], \dots, m[k_n]).$$

• Dec: Given $k \in \mathcal{K}$ and ciphertext $c \in \{0, 1\}^n$, output the message m by inverting the permutation.

Prove that this scheme is **not EAV-secure**.

2. [3 points] Consider a linear feedback shift register (LFSR) which has n registers. Let the initial state of the LFSR be $s = (s_1, s_2, \ldots, s_n)$ where each $s_i \in \{0, 1\}$. Let the feedback equation be given by

$$s_{j+n+1} = \bigoplus_{i=1}^{n} a_i s_{j+i}$$

where $a_i \in \{0, 1\}$ and $j \ge 0$. Let $G : \{0, 1\}^n \mapsto \{0, 1\}^m$ be the output of the LFSR when restricted to m bits where m > n. So $G(s) = (s_1, s_2, \ldots, s_m)$.

Prove that G is **not a pseudorandom generator** irrespective of how the values of a_i are chosen.

3. [4 points] Let F be a length-preserving pseudorandom function having key length, input length, and output length all equal to n bits. Consider the following keyed function $F': \{0,1\}^n \times \{0,1\}^{n-1} \mapsto \{0,1\}^{2n}$ defined as

$$F'_k(x) = F_k(0||x)||F_k(x||1).$$

Prove that the F' is **not** a pseudorandom function. Here $F'_k(x) = F'(k, x)$, $F_k(y) = F(k, y)$, and \parallel is the string concatenation operator.