Midsem Exam : 25 points

1. (5 points) Let $f: \{0,1\}^n \to \{0,1\}^n$ be any function. The Feistel transform of f is the function $FSTL_f: \{0,1\}^{2n} \to \{0,1\}^{2n}$ defined by

$$FSTL_f(L||R) = R||f(R) \oplus L$$

where L and R both belong to $\{0,1\}^n$, \oplus denotes the bitwise XOR operator, and \parallel denotes the string concatenation operator.

Let $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a length-preserving pseudorandom function. Define $F': \{0,1\}^n \times \{0,1\}^n \times \{0,1\}^{2n} \to \{0,1\}^{2n}$ as

$$F'(k_1, k_2, L \| R) = FSTL_{F_{k_2}} \left(FSTL_{F_{k_1}}(L \| R) \right)$$

If k_1, k_2 are chosen independently and uniformly from $\{0, 1\}^n$, prove that $F'(k_1, k_2, \cdot) : \{0, 1\}^{2n} \to \{0, 1\}^{2n}$ is **not** a pseudorandom permutation. Note that the distinguisher knows the structure of F' but does not have access to the keys k_1, k_2 .

Note: $F'(k_1, k_2, \cdot)$ is a pseudorandom permutation if for every PPT distinguisher D, there is a negligible function negl such that:

$$\left|\Pr\left[D^{F'(k_1,k_2,\cdot)}(1^n)=1\right]-\Pr\left[D^{g(\cdot)}(1^n)=1\right]\right|\leq \texttt{negl}(n),$$

where the first probability is taken over uniform choice of $k_1, k_2 \in \{0, 1\}^n$ and the randomness of D, and the second probability is taken over uniform choice of $g \in \operatorname{Perm}_{2n}$ and the randomness of D. The set Perm_{2n} is the set of all bijections with domain equal to $\{0, 1\}^{2n}$ and range equal to $\{0, 1\}^{2n}$. By $D^{F'(k_1, k_2, \cdot)}(1^n)$ and $D^{g(\cdot)}(1^n)$, we mean distinguishers D who have oracle access to $F'(k_1, k_2, \cdot)$ and g respectively.

- 2. (a) $(2\frac{1}{2} \text{ points})$ Let $\Pi = (\text{Gen, Enc, Dec})$ be a private-key encryption scheme with message space $\mathcal{M} = \{0, 1\}^n$ where *n* is the security parameter. Let \mathcal{C} be the ciphertext space of Π . Define $\Pi' = (\text{Gen}', \text{Enc}', \text{Dec}')$ to be another private-key encryption scheme with message space $\mathcal{M}' = \{0, 1\}^{2n}$ as follows:
 - Gen' is the same algorithm as Gen. Both algorithms output a key k from a keyspace \mathcal{K} .
 - For key k and message $m = m_1 || m_2 \in \{0,1\}^{2n}$ where $m_1 \in \{0,1\}^n$ and $m_2 \in \{0,1\}^n$, the ciphertext output by Enc' is $(c_1, c_2) \in \mathcal{C} \times \mathcal{C}$ where $c_1 \leftarrow \operatorname{Enc}_k(m_1)$ and $c_2 \leftarrow \operatorname{Enc}_k(m_2)$.
 - For key k and ciphertext $(c_1, c_2) \in \mathcal{C} \times \mathcal{C}$, the message output by Dec' is $m_1 || m_2$ where $m_1 = \text{Dec}_k(c_1)$ and $m_2 = \text{Dec}_k(c_2)$.

Prove that Π' is **not** CCA-secure, even if Π is CCA-secure.

- (b) $(2\frac{1}{2} \text{ points})$ Let $\Pi_1 = (\text{Gen}_1, \text{Enc}_1, \text{Dec}_1)$ and Let $\Pi_2 = (\text{Gen}_2, \text{Enc}_2, \text{Dec}_2)$ be two privatekey encryption schemes with the same message space \mathcal{M} and ciphertext space \mathcal{C} . Define $\Pi' = (\text{Gen}', \text{Enc}', \text{Dec}')$ to be another private-key encryption scheme with message space \mathcal{M} and ciphertext space $\mathcal{C} \times \mathcal{C}$ as follows:
 - The key generated by Gen' is (k_1, k_2) where $k_1 \leftarrow \text{Gen}_1(1^n)$ and $k_2 \leftarrow \text{Gen}_2(1^n)$.
 - For key (k_1, k_2) and message $m \in \mathcal{M}$, the ciphertext output by Enc' is $(c_1, c_2) \in \mathcal{C} \times \mathcal{C}$ where $c_1 \leftarrow \text{Enc}_{1,k_1}(m)$ and $c_2 \leftarrow \text{Enc}_{2,k_2}(m)$.
 - For key (k_1, k_2) and ciphertext $(c_1, c_2) \in C \times C$, the decryption algorithm Dec' first computes $m_1 = \text{Dec}_{1,k_1}(c_1)$ and $m_2 = \text{Dec}_{2,k_2}(c_2)$. If $m_1 \neq m_2$, Dec' outputs \perp to indicate decryption failure. If $m_1 = m_2$, Dec' outputs m_1 .

Prove that Π' is **not** CCA-secure, even if Π_1 and Π_2 are CCA-secure.

Note 1: The CCA indistinguishability experiment $\operatorname{PrivK}_{4\Pi}^{ca}(n)$ where $\Pi = (\operatorname{Gen}, \operatorname{Enc}, \operatorname{Dec})$ is described below.

- 1. A key k is generated by running $Gen(1^n)$.
- 2. The adversary \mathcal{A} is given 1^n and oracle access to $\text{Enc}_k(\cdot)$ and $\text{Dec}_k(\cdot)$. It outputs a pair of messages $m_0, m_1 \in \mathcal{M}$ with $|m_0| = |m_1|$.
- 3. A uniform bit $b \in \{0,1\}$ is chosen. Ciphertext $c \leftarrow \text{Enc}_k(m_b)$ is computed and given to \mathcal{A} . c is called the *challenge ciphertext*.
- 4. The adversary \mathcal{A} continues to have oracle access to $\operatorname{Enc}_k(\cdot)$ and $\operatorname{Dec}_k(\cdot)$, but is not allowed to query the latter on the challenge ciphertext itself. Eventually, \mathcal{A} outputs a bit b'.
- 5. The output of the experiment is defined to be 1 if b' = b, and 0 otherwise. If output is 1, we say that A succeeds.

Note 2: A private-key encryption scheme $\Pi = (Gen, Enc, Dec)$ has indistinguishable encryptions under a chosenciphertext attack, or is CCA-secure, if for all probabilistic polynomial-time adversaries \mathcal{A} there is a negligible function negl such that, for all n,

$$\Pr\left[\operatorname{PrivK}_{\mathcal{A},\Pi}^{\operatorname{cca}}(n) = 1\right] \leq \frac{1}{2} + \operatorname{negl}(n).$$

- 3. (a) $(2\frac{1}{2} \text{ points})$ Show that the CBC block cipher mode encryption scheme is not CCA-secure.
 - (b) $(2\frac{1}{2})$ points) Show that the CTR block cipher mode encryption scheme is not CCA-secure.

Note 1: Cipher Block Chaining (CBC) mode works as follows:

- Let $m = m_1, m_2, \dots, m_l$ where $m_i \in \{0, 1\}^n$.
- Let F be a length-preserving pseudorandom permutation with block length n.
- A uniform initialization vector (IV) of length n is first chosen.
- Set $c_0 = IV$. For $i = 1, \ldots, l$, set $c_i := F_k(c_{i-1} \oplus m_i)$. The ciphertext is (c_0, c_1, \ldots, c_l) .
- For $i = 1, 2, ..., l, m_i \coloneqq F_k^{-1}(c_i) \oplus c_{i-1}$.

Note 2: Counter (CTR) mode works as follows:

- Let $m = m_1, m_2, \ldots, m_l$ where $m_i \in \{0, 1\}^n$.
- Let F be a length-preserving pseudorandom function with block length n.
- A uniform value \mathtt{ctr} of length n is first chosen.
- Set $c_0 = \mathsf{ctr.}$ For $i = 1, \ldots, l$, set $c_i \coloneqq F_k(\mathsf{ctr} + i) \oplus m_i$. The ciphertext is (c_0, c_1, \ldots, c_l) .
- For $i = 1, 2, \ldots, l, m_i \coloneqq F_k(\mathtt{ctr} + i) \oplus c_i$.
- 4. Recall that the PKCS #5 padding scheme is used to pad a message x having length some integral number of bytes into a *encoded data* m having length jL bytes where L is the block length in bytes. The number of bytes which are appended to x to get m is b where $1 \le b \le L$. Each of these padding bytes is equal to the byte representation of the integer b. Assume that L < 256.

Suppose the encoded data m has length 2L bytes, i.e. $m = (m_1, m_2)$ where $|m_i| = L$ bytes for i = 1, 2. Recall that the encoded data m is obtained by padding the message x. Let F be a length-preserving pseudorandom permutation where $F_k : \{0, 1\}^n \mapsto \{0, 1\}^n$ where n = 8L. (Note: 8L bits = L bytes) Now suppose the encoded data is encrypted using CBC mode as described below.

- The ciphertext corresponding to $m = (m_1, m_2)$ is given by $c = (c_0, c_1, c_2)$ where
 - $-c_0$ is uniformly chosen from $\{0,1\}^n$.
 - $-c_i = F_k(m_i \oplus c_{i-1})$ for i = 1, 2.

Suppose an adversary has access to a padding oracle. On input some ciphertext block c' of the form (c'_0, c'_1, c'_2) or (c'_0, c'_1) , the padding oracle only returns a message from the set {ok, padding_error}. The ok is returned when there is no padding error in the encoded data m' obtained from c'. If there is a padding error, then padding_error is returned.

- (a) (2 points) Describe a procedure by which the adversary can recover the **length** *b* of the padding in the encoded data *m*. Be specific about the inputs sent to the padding oracle and the decisions made by your procedure on receiving the oracle's responses.
- (b) (3 points) Describe a procedure by which the adversary can recover all the message bytes in the encoded data m. The adversary is allowed to send ciphertext blocks of the form $c' = (c'_0, c'_1)$ or of the form $c' = (c'_0, c'_1, c'_2)$.
- 5. (5 points) Recall the construction of a CBC-MAC using a length-preserving pseudorandom function F with key/input/output length equal to n bits. Let $m \in \{0,1\}^{dn}$ be a message for a fixed integer d > 1.
 - Gen: Choose key k uniformly from $\{0, 1\}^n$.
 - Mac: Parse the message m into d blocks m_1, \ldots, m_d of length n bits each. Set $t_0 = 0^n$. For $i = 1, \ldots, d$, set $t_i = F_k(t_{i-1} \oplus m_i)$. Output t_d as the tag.
 - Vrfy: For a message-tag pair (m, t) output 0, if the message is not of length dn. Otherwise, output 1 if and only if $t = \text{Mac}_k(m)$.

Consider the following variation of the CBC-MAC. Prove that this variation (Gen, Mac', Vrfy') is an insecure MAC.

- Mac': Parse the message m in to d blocks m₁,..., m_d of length n bits each. Choose an initialization vector IV uniformly from {0,1}ⁿ. Set t₀ = IV. For i = 1,..., d, set t_i = F_k(t_{i-1} ⊕ m_i). Output (IV, t_d) as the tag.
- Vrfy': For a message-tag pair (m, (IV, t)) output 0, if the message is not of length dn. Parse the message m into d blocks m₁,..., m_d of length n bits each. Set t₀ = IV. For i = 1,..., d, set t_i = F_k(t_{i-1} ⊕ m_i).

Output 1 if and only if $t = t_d$.

Note: A message authentication code $\Pi = (Gen, Mac, Vrfy)$ is existentially unforgeable under an adaptive chosenmessage attack, or just secure, if for all PPT adversaries \mathcal{A} , there is a negligible function negl such that:

$$\Pr\left[\texttt{Mac-forge}_{\mathcal{A},\Pi}(n) = 1\right] \leq \texttt{negl}(n).$$

The message authentication experiment $\texttt{Mac-forge}_{\mathcal{A},\Pi}(n)$ is defined as follows:

- 1. A key k is generated by running $Gen(1^n)$.
- 2. The adversary \mathcal{A} is given input 1^n and oracle access to $\operatorname{Mac}_k(\cdot)$. The adversary eventually outputs (m, t). Let \mathcal{Q} denote the set of all queries that \mathcal{A} asked its oracle.
- 3. \mathcal{A} succeeds if and only if (1) $\operatorname{Vrfy}_k(m,t) = 1$ and (2) $m \notin \mathcal{Q}$. If \mathcal{A} succeeds, the output of the experiment is 1. Otherwise, the output is 0.