EE 720: An Introduction to Number Theory and Cryptography (Spring 2020)
Lecture 15 - March 12, 2020
Instructor: Saravanan Vijayakumaran
Scribe: Saravanan Vijayakumaran

1 Lecture Plan

- Cyclic Groups
- Properties of \mathbb{Z}_{N}^{*}

2 Cyclic Groups

- Proposition: Let G be a finite group. Assume multiplicative notation for the group operation. For $g \in G$, the set $\langle g\rangle=\left\{g, g^{2}, g^{3}, \ldots\right\}$ is a subgroup of G.
- $\langle g\rangle$ is called the subgroup generated by g. If the order of the subgroup is i, then i is called the order of g.
- Definition: Let G be a finite group and $g \in G$. The order of g is the smallest positive integer k with $g^{k}=1$ where 1 is the identity of G.
- Proposition: Let G be a finite group of order m and let $g \in G$ have order k. Then $k \mid m$.
- Definition: A cyclic group is a finite group G such that there exists a $g \in G$ with $\langle g\rangle=G$. We say that g is a generator of G.
- Proposition: If G is a group of prime order p, then G is cyclic. Furthermore, all elements of G except the identity are generators of G.
- Definition: Groups G and H are isomorphic if there exists a bijection $\psi: G \rightarrow H$ such that

$$
\psi(\alpha \star \beta)=\psi(\alpha) \otimes \psi(\beta)
$$

for all $\alpha, \beta \in G$. Here \star is the binary operation in G and \otimes is the binary operation in H.

- Example of group isomorphism
$-\mathbb{Z}_{2}=\{0,1\}$ is a group under modulo 2 addition
$-R=\{1,-1\}$ is a group under multiplication

\[

\]

3 Some Properties of Cyclic Groups

- Theorem: Every cyclic group G of order n is isomorphic to \mathbb{Z}_{n} with addition modulo n as the operation.
- Corollary: Every cyclic group is abelian.
- Definition: The Euler phi function $\phi(n)$ is defined on the positive integers as follows. We define $\phi(1)=1$. For $n>1$, the value of $\phi(n)$ is the number of integers in $\{1,2, \ldots, n-1\}$ which are relatively prime to n, i.e. which satisfy $\operatorname{gcd}(i, n)=1$.
- Theorem: A cyclic group of order n has $\phi(n)$ generators.
- Examples
* $\mathbb{Z}_{5}=\{0,1,2,3,4\}$ has four generators $1,2,3,4$
* $\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$ has two generators 1,5
$* \mathbb{Z}_{10}=\{0,1,2, \ldots, 9\}$ has four generators $1,3,7,9$
- Proof
* Let $G=\langle g\rangle$.
* If g^{i} is also a generator of G, then $\left(g^{i}\right)^{n}=e$ and $\left(g^{i}\right)^{k} \neq e$ for all positive integers $k<n$.
* Since $g^{n}=e, i k$ cannot be a multiple of n unless $k=n$. In other words, $\operatorname{lcm}(i, n)=$ $i n$. This implies that $\operatorname{gcd}(i, n)=1$.

4 References and Additional Reading

- Section 8.3.1 from Katz/Lindell
- Section 7.3 of lecture notes of MIT's Principles of Digital Communication II, Spring 2005. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-451-principles-readings-and-lecture-notes/MIT6_451S05_FullLecNotes.pdf
- Section 2.4 of Topics in Algebra, I. N. Herstein, 2nd edition

